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Series Preface

Theoretical biology is an old subject, tracing back centuries. At times, theoretical developments
have represented little more than mathematical exercises, making scant contact with reality. At
the other extreme have been those works, such as the writings of Charles Darwin, or the models
of Watson and Crick, in which theory and fact are intertwined, mutually nourishing one another
in inseparable symbiosis. Indeed, one of the most exciting developments in biology within the
last quarter-century has been the integration of mathematical and theoretical reasoning into all
branches of biology, from the molecule to the ecosystem. It is such a unified theoretical biology,
blending theory and empiricism seamlessly, that has inspired the development of this series.

This series seeks to encourage the advancement of theoretical and quantitative approaches to
biology, and to the development of unifying principles of biological organization and function,
through the publication of significant monographs, textbooks and synthetic compendia in
mathematical and computational biology. The scope of the series is broad, ranging from
molecular structure and processes to the dynamics of ecosystems and the biosphere, but unified
through evolutionary and physical principles, and the interplay of processes across scales of
biological organization.

The principal criteria for publication beyond the intrinsic quality of the work are substantive
biological content and import, and innovative development or application of mathematical or
computational methods. Topics will include but not be limited to cell and molecular biology,
functional morphology and physiology, neurobiology and higher function, immunology and
epidemiology, and the ecological and evolutionary dynamics of interacting populations. The
most successful contributions, however, will not be so easily categorized, crossing boundaries
and providing integrative perspectives that unify diverse approaches; the study of infectious
diseases, for example, ranges from the molecule to the ecosystem, involving mechanistic inves-
tigations at the level of the cell and the immune system, evolutionary perspectives as viewed
through sequence analysis and population genetics, and demographic and epidemiological
aspects at the level of the ecological community.

The objective of the series is the integration of mathematical and computational methods
into biological work; the volumes published hence should be of interest both to fundamental
biologists and to computational and mathematical scientists, as well as to the broad spectrum of
interdisciplinary researchers that comprise the continuum connecting these diverse disciplines.

Simon Levin



Preface

In the early 1970s, gel electrophoresis was a novel technique in biochemistry labs. Now
used as the work horse in genomic sequencing projects, molecular biology has undergone an
incredibly rapid development, currently yielding so much raw data that efficient computer algo-
rithms are mandatory for data analysis. The interdisciplinary field of computational biology, or
bioinformatics, includes both theoretical and practical contributions from computer science.
mathematics and biology and involves the development of mathematical models, statistical
analysis, computer simulation, efficient algorithms, database systems, web interface, etc.

This text is meant to be a self-contained introduction to computational biology. where we
provide the background mathematics required to understand why certain algorithms work. For
instance, it seems to us that one must understand the underlying probability theory for develop-
ment of hidden Markov models, rather than simply present the pseudocode for this important
motif recognition algorithm. As a learning tool, many of the algorithms described in this book
have prototype implementations in C/C++ and sometimes Java, whose source code can be
found on the web pages for this book, found by following links fromhttp://www.wiley.
co.uk/statistics.

We would like to thank P. Baldi, J. Baglivo, C. Benham, E. Bornberg-Bauer, D. Chambers,
S. A. Cook, S. Eddy, I. Hofacker, M. Kolmar, H.-P. Lenhof, R. Matthes, K. Reinert, T. Santner,
B. Steipe, A. von Haeseler, J. Timmer, J. Tromp, E. von Werner and S. Will for discussions,
comments and suggestions. Thanks are due as well to the students of the Bioinformatik courses
taught every semester by the authors from 1996 through the present at the University of Munich.
We have tried to provide a self-contained course for the typical computer science and biology
students of our classes, in particular for those students in the new Bioinformatics Program at the
University of Munich. Finally we would like to thank anonymous reviewers, whose comments
were helpful in shaping this text. The authors nevertheless assume full responsibility for any
remaining errors in the book.

The institutional affiliation of the first author (P. Clote) is now Boston College, Department
of Computer Science and Department of Biology. This book was written during the period
that the first author held the Gerhard-Gentzen Chair of Theoretical Computer Science at the
University of Munich, which allowed him to build a new group in theoretical computer science,
including the present group in computational biology. Were it not for initial funding by the
Volkswagen Stiftung and the freedom allowed by Humboldt’s vision of the German academic
system, this book would not have been written.

Peter Clote and Rolf Backofen
June, 2000



1
Molecular Biology

Survival machines began as passive receptacles for the genes, providing
little more than walls to protect them from the chemical warfare of their
rivals and the ravages of accidental molecular bombardment. In the early
days they ‘fed’ on organic molecules freely available in the soup. (R.
Dawkins, The Selfish Gene 1989 [Daw89])

In the past, living organisms were grouped into two distinct life forms or domains:

e prokaryotes, represented by cyanobacteria (blue-green algae) and common bacteria
such as Escherichia coli, not having a nuclear membrane to separate genomic DNA
from the cytoplasm; and

e cukaryotes, represented by unicellular organisms such as the flagellum Trypanosoma
brucei (one species belonging to the T. brucei complex causes sleeping sickness in
humans) and multicellular organisms, all of which have a nuclear membrane.

However, in August 1996, the genome' sequence of the methane-generating archaebacterium
Methanococcus jannaschii was published by Bult et al. [BWO196]. A small initial portion of
the DNA sequence, consisting of over 1.6 million characters, is given as follows:
TACATTAGTGTTTATTACATTGAGAAACTTTATAATTAAAAAAGATTCATGTAAATTT
CTTATTTGTTTATTTAGAGGTTTTAAATTTAATTTCTAAGGGTTTGCTGGTTTGATTG
TTTAGAATATTTAACTTAATCAAATTATTTGAATTTTTGAAAATTAGGATTAATTAGG
TAAGTAAATAAAATTTCTCTAACAAATAAGTTAAATTTTTAAATTTAAGGAGATAAAA
ATACTCTGTTTTATTATGGAAAGAAAGATTTAAATACTAAAGGGTTTATATTATGAAG
TAGTTACTTACCCTTAGAAAAATATGGTATAGAAAAGCTTAAATATTAAGAGTGATGA
AGTATATTATGT. ..

Analysis of this sequence provided solid evidence for a startling hypothesis advanced two
decades earlier by Carl Woese: there is a third domain of life called Archaea, which is distinct
from Prokaryva and Eukarya:

e archaebacteria, representing life domain Archaea, share cellular organization
features with prokaryotes (such as lack of a nuclear membrane), but seem closer
to eukaryotes in transcription and translation mechanism.

M. jannaschii was discovered in 1982 in a sediment sample collected by the research
submarine Alvin from a white smoker on a hot spot of the sea floor of the Pacific Ocean

! The genome of an organism constitutes the entirety of its DNA.
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(21° N on the East Pacific Rise) at a depth of 2600 meters. This methanogenic archaeon is
thermophilic, living in a temperature range from 48°-94°C, with an optimum temperature
around 85°C, and obtains its energy needs from high-energy bonds in certain inorganic
compounds near thermal vents. Producing methane from carbon dioxide,> M. jannaschii
represents a potentially non-polluting energy source.

How can one determine the (hypothetical) genes of M. jannaschii from its 1.66 megabase
pair genome? How can one compute that 56% of its 1738 genes are completely new, unlike
any genes found in prokaryotes or eukaryotes? M. jannaschii has only one kind of DNA
polymerase,* while all other organisms studied have several kinds. Could this archaeon have
an additional, completely different mechanism for DNA replication? If so, how can one begin
to find the genes involved? How can one assert with confidence that Archaea is sufficiently
different from Protokarya and Eukarya to warrant that it constitute a third domain of life? How
can one devise a likely phylogenetic (ancestral) tree for life, which has Protokarya separating
first from a common trunk, while Archaea separates somewhat later from the trunk leading
to Eukarya? With genome sizes measuring into the millions and billions, only through the
use of computers can one store and analyze genomic data. Computational biology, also called
bioinformatics, is concerned with the development of efficient algorithms, statistical analysis,
and mathematical modeling in order to answer such questions. In this chapter, we’ll give
a briet survey of those concepts of molecular biology, which are essential to computational
biology.

The ‘central dogma’ of information flow in biology states that information flows from
DNA to RNA to protein; since a protein’s functionality is determined by its unique three-
dimensional structure, it follows that the one-dimensional sequence information in DNA
determines the three-dimensional structure of the corresponding protein.

The central dogma states that once ‘information’ has passed into a protein
it cannot get out again. The transfer of information from nucleic acid, or
from nucleic acid to protein, may be possible, but transfer from protein to
protein, or from protein to nucleic acid, is impossible. Information here
means the precise determination of sequence, either of bases in the nucleic
acid or of amino acid residues in the protein. (Francis Crick [Cri58])

Thus we have the following picture of the information flow in biology:

DNA — RNA — Protein

Following this diagram, the remainder of the chapter is organized as follows. We begin with
an overview of organic chemistry needed in the sequel, then move on to DNA, RNA, amino
acids and proteins. Finally, we describe the transcription and translation machinery that nature
uses to process information in DNA into proteins.

2 Note that COy + 8H = CHy + 2H20. M. jannaschii uses a complicated pathway to perform this
reduction to produce methane.
3 As explained later, DNA polymerase is an enzyme necessary for DNA replication.
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1.1 Some Organic Chemistry

Organic chemistry is centered around the chemistry of the carbon atom. The reason for this is
that carbon has properties that distinguish it from most other elements.* These properties are

e carbon has a small size,
e carbon has 4 covalent bonds,
e several carbon atoms can form rings and chains.

Thus, it is possible to build large, stable molecules using carbon.

One distinguishes two types of bonds, namely covalent and non-covalent bonds. Non-
covalent bonds are much weaker than covalent bonds (typically 30-300 times weaker in
aqueous environment).” The average energy of a non-covalent bond is normally not much
stronger than the energy of thermal movement (at room temperature).

A covalent bond is formed between two atoms that share electrons. Molecules are
built using covalent bonds. Non-covalent bonds are subdivided into three classes, namely
hydrogen bonds, ionic bonds, and van der Vaals interactions. Because of their importance.
we concentrate on hydrogen bonds. Hydrogen bonds are used for base-pairing, which holds
together the two strands of the DNA double helix. Hydrogen bonds also play an important
role in RNA (which is normally single-stranded), as well as in stabilizing protein structure.

A hydrogen bond can be formed if there are two electronegative atoms (such as oxygen or
nitrogen) that share a hydrogen atom, e.g.,

covalent bonds

x \\\\

ove o @ 1111111111111 nn

I,"
hydrogen bond

The hydrogen bond is caused by the polarity of the participating molecules. These bonds are
in the range of 3-5 kJ/mole, and are easily disassociated by heat or certain chemicals. By
comparison, a covalent C—C bond has 380 kJ/mole.

An important example of a polar molecule is the water molecule, which is shown in
Figure 1.1. The electronegative oxygen attracts the electrons from both hydrogens, thus
yielding electropositive and electronegative regions as depicted in the figure. Due to this
polarity and the form of the region, water molecules are able to form hydrogen bonds with
four other water molecules. At room temperature, 15% of the water molecules have (short-
duration) hydrogen bonds with four other water molecules.

Other molecules that are polar can also form hydrogen bonds with water molecules. Since
the formation of hydrogen bonds is energetically advantageous, polar molecules combine
well with water and are therefore called hydrophilic molecules. On the other hand, non-polar

4 A partial exception is silicon, which has some similar properties to carbon.
5 Of course this does not hold for the vacuum, where the strength of an ionic bond is comparable to that of a
covalent bond.
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Water
molecule

Electropositive

Electronegative

Figure 1.1 Polarity of the water molecule. The positive and negative charged regions, which span a
tetrahedron, are shown in the left part.

groups cannot form hydrogen bonds. Since non-polar molecules disturb the network of water
molecules connected via hydrogen bonds, such molecules do not combine well with water
and hence are called Aydrophobic. To minimize the effects of disturbing the (energetically
favored) network of water molecules, hydrophobic molecules are forced together by the water.
This force is called the hydrophobic force.

1.2 Small Molecules

A cell is made up of a small number of elements, where C, N, O and H make up 99% of the
mass. A hydrocarbon molecule consists of only carbon and hydrogen. An acid (resp. base)
has the property that in water it donates (resp. accepts) a free hydrogen ion, or proton, H* . For
instance, hydrochloric acid, HC|, disassociates in an aqueous solution to form H and CI~,
hence yielding the hydronium ion H3O™. The base sodium hydroxide, NaOH, disassociates
in water to form Na* and OH™.

Some specific simple groups such as the hydroxyl group —OH, the carboxyl group
—COOH (which characterizes an organic acid), and the amino group —NH, commonly
occur in organic molecules (see Figure 1.2). Another important class of C-O compounds
are generated by an ester linkage (see Figure 1.3). Small molecules are defined as organic
molecules with up to 30 carbon atoms. A macromolecule, which is composed of a number of
equal or similar smaller molecules (called monomers), is called a polymer. The most important
polymers are DNA/RNA (composed of nucleotides) and proteins (composed of amino acids).

One distinguishes four groups of small molecules:

sugar: A sugar molecule is a small carbohydrate, where a carbohydrate has the generic
formula C, (H»Q),. Larger carbohydrates are called polysaccharides.

Sfatty acids: For example, components of lipid molecules, which make up the cell
membrane.

nucleotides: Building blocks for DNA and RNA. The nucleotide ATP, adenoside
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Alcohol ~——C —OH | -~

hydroxyl group

Carboxylic Acid —C—C <— carboxyl group

I
I
| .
amino grou
Amine —C—N : -— P
[}
[}
]

Figure 1.2 Groups of C-O and C-N compounds. Common groups are the hydroxyl group. the
carboxyl group, and the amino group.

Acid + Alcohol = Ester

/O 0
_ 7 | /

\ o= =
OH + HO_T_ 0—C— +H,0

|

H H

Figure 1.3  An ester is the result of a reaction of an alcohol with an acid (such as carboxylic acid). The
sign = indicates that the reaction can proceed in both direction. Proceeding from left to right, an ester
and a water molecule are products, while from right to left, a water molecule is broken down, a process
called hydrolysis.
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triphosphate, is used for the storage and transportation of energy in cells, while
GTP. guanine triphosphate, plays a role as neurotransmitter in brain.

amino acids: Proteins are composed of amino acids (where the amino acids are
connected in a linear chain by a peptide bond).

1.3 Sugars

LT . H
, H\ //O , aldehyde group I
S S H~—C=—OH
H _(’ — OH H —4—2 -0 \‘ keto group
HO —-é —H HO —\cl“;‘H/
H—C— OH H—CI‘—OH
H—(IT—()H H—C— OH
H—C— OH H—C—OH
} )
Glucose Fructose

Figure 1.4 Two common 6-carbon sugars.

Sugars can be distinguished with respect to their number of carbon atoms and with respect
to their molecular structure. Important classes with respect to the number of carbons are
pentoses (having 5 Cs) and hexoses (having 6 Cs). With respect to structure, there are two
forms of sugar, namely aldehvde sugars (also called aldoses) and ketone sugars (or ketoses).
Figure 1.4 shows two common hexoses. Since the keto or aldehyde group can react with a
hydroxyl group, a sugar can occur in cyclic form (see Figure 1.5). The carbons in a sugar
are usually numbered, where one starts either with the aldehyde group, or with the end that
is nearest to the keto group. Of particular significance for molecular biology is the 5-carbon
sugar (or pentose) called ribose, which is a ketose. There are two different forms of ribose
that occur, namely ordinary ribose, and deoxyribose, where one oxygen atom is missing (see
Figure 1.6).

1.4 Nucleic Acids
1.4.1 Nucleotides

Both DNA and RNA are polymers, which are composed of nucleotides (nucleotide polymers
are also called oligonucleotides). A nucleotide is a molecule consisting of a base, a ribose
sugar (in DNA, deoxyribose), and a phosphate molecule. The base is bound to the 1’ carbon,
wherease the phosphate is bound to the 5 carbon (see Figure 1.7). A nucleoside consists of a
base and a ribose sugar only. The base is a carbon ring molecule containing nitrogen atoms.
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non-cyclic cyclic

>CHOH
OH H

Il

4
C | | C
3 2
| | OH OH
OH OH

Figure 1.5 The cyclic and non-cyclic form of ribose. We have suppressed most of the H-atoms attached
directly to C.

Ribose Deoxyribose

SCHOH

Oy OH
1

Figure 1.6 Ribose and deoxyribose.

Phosphate OH

Figure 1.7 General picture of a nucleotide.
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In DNA, we have the four bases adenine (A), cytosine (C), guanine (G), and thymine (T)
(see Figure 1.8). In RNA, the thymine is replaced by uracil (U). The purines adenine and
guanine have a 2-ring structure, and the pyramidines cytosine, thymine and uracil have a 1-
ring structure. Note that adenine and thymine have 2 hydrogen bond sites whereas cytosine
and guanine have 3 hydrogen bond sites (see Figure 1.9).

I I I
HC ‘ \H HJC\C/C\\H /\C/C\,\'
U] | T | A
NN N \/C\/C“
NH, 0
1 u
XN /\\ RN
HC N C \H
I ¢ ] L N6
\\/C \0 a/ N /C\NH,

Figure 1.8 Chemical forms of the bases.

Nucleotides occur in three different forms, namely as monophosphate, diphosphate, and
triphosphate nucleotides, having 1, 2, and 3 phosphate groups attached, respectively. The
additional phosphate groups in diphosphate and triphosphate nulceotides can be split off,
yielding energy that can be used for another process. Thus, the diphosphate and triphosphate
nucleotides are used to transport energy in the cell.

1.4.2 DNA

At room temperature, DNA exists as a double-stranded molecule, formed by hydrogen bonds
between complementary bases: A with T, and C with G, the so-called Watson—Crick rules.®
These rules explain an experimental observation made by Chargaft in 1951 (two years before
publication of the Watson—Crick model of DNA): adenine and thymine (resp. cytosine and
guanine) appear in equal quantities in DNA.”7 In double-stranded B-DNA, the A-T and G-C
base pairs are stacked in a planar fashion (with slight tilt) with about 3.4 A per base pair.

A single strand of DNA is generated by chaining together nucleotides via a phosphodiester
bond. In this bond, the phosphate molecule of the first nucleotide is attached to the hydroxyl
group at the 3’ carbon of the next nucleotide (see Figure 1.10). The different ends of the DNA
strand are numbered by the carbon atom position, where the next nucleotide can be attached.

% Francis H. Crick and James D. Watson received the 1962 Nobel Prize for Physiology or Medicine.
7 According to [WHR87]. bacterial virus phage T2 lacks cytosine, but does contain a cytosine-like base
that hydrogen-bonds to guanine.
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Adenine Thymine

p
aunn 1

e

PURINES < > PYRIMIDINES

Guanine Cytosine

Figure 1.9 The four DNA bases together with their hydrogen bonds. The relative location of the bases
is shown as they occur in DNA.

The 5’ end contains a phosphate group, attached to the 5’ carbon of the pentose sugar. The 3’
end is characterized by the fact that the 3’ position of the corresponding nucleotide is free for
appending the next nucleotide.

Theoretically, there could be two directions for extending a single strand, namely by
extending the 5' end, or by extending the 3’ end. In nature, DNA is always extended at the 3’
end, which implies that DNA grows in the 5’ — 3’ direction. The reason is that the energy for
the extension of the DNA is given by the new nucleotide containing a triphosphate group.

If the extension were in the 3’ — 5’ direction, then the strand would have to provide the
energy for extension (by having a triphosphate attached to the 5’ end). But then it would be
difficult to remove the last extended nucleotide from a strand, since this would remove the
group providing the energy for extension. Thus, the error correction mechanism would be
more difficult (which is one of the possible reasons why nature uses the 5' — 3’ direction for
DNA).

Double-stranded DNA forms a helix, where one strand goes in the direction from 5' to 3,
while the second goes from 3’ to 5’; thus the second strand is the reverse complement of the
first strand. This mechanism allows one strand of DNA to serve as a template for producing
the reverse complement strand, thus explaining how DNA can replicate.

In many viruses and bacteria, DNA exists in a circular form. For instance, the genome of
M. jannaschii consists of one large circular chromosome consisting of 1664 976 base pairs
(bp), together with a large circular extrachromosomal element, or ECE, consisting of 58 407
bp, and one small circular ECE consisting of 16 550 bp. Locally, DNA is often tightly wound
around histone proteins in a structure called a nucleosome, thus causing a bunching-up or
banding, visible when using certain color stains under a light microscope — hence the name
chromosome. Nucleosomes appear to be an essential structure, as manifested by the extreme
conservation of the histone complex throughout organisms. On the order of 150-200 bp lie
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Figure 1.10 Extension of a single DNA strand, where the new nucleotides has a triphosphate group
attached. The gray circle shows the 3' — 5’ phosphodiester bond connecting two nucleotides.
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Table 1.1 Nucleotide codes.
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on the nucleosome, forming about 2 superhelices. Moreover, the DNA within nucleosomes is
more tightly wound — roughly 10 A per helix, as contrasted with 10.4 A per helix in B-DNA.
In higher organisms, DNA may appear in linear chromosome pairs — one chromosome from
each parent.

Circular DNA (and even linear DNA, since the latter can be locally considered circular in
the region of a nucleosome) has linking, winding, and twist numbers. Think of an unbuckled
belt that you twist several times and then buckle. Twist is the number of times you twisted
the belt before buckling it. Now make a figure-of-eight with the belt, and notice how the
twist number is reduced by increasing the writhe. Formal mathematical definitions of linking
number (L), twist (T'), and writhe (11") can be given, for which the important topological
invariance

L=T+W (1.1)

holds, a result due to J. White [Whi89, Whi95]. In a later chapter, we shall present a method
due to C. Benham et al. [Ben90, SMFB95], which incorporates equation (1.1) to predict where
double stranded DNA begins to separate in replication and transcription events. In vivo, DNA
is usually negatively supercoiled, and it is known that certain enzymes, called topoisomerases,
actually cut the DNA (topoisomerase I cuts a single strand while topoisomerase II cuts both
strands).

When determining the entire nucleotide sequence, or genome, of an organism (such as M.
Jjannaschii above), laboratory uncertainties lead at times only to a partial determination of
certain bases — for instance, that either A or C occurs at a certain position. The nucleotide
code displayed in Table 1.1 includes a symbol for each subset of {A.C, G, T}.

A segment of DNA that codes for a protein (as explained below) is called a gene. In
diploid cells, where chromosomes donated from each parent are paired, the corresponding
genes may be identical (homozygous) or non-identical (heterozygous). In the latter case, the
corresponding, but slightly different genes are called alleles. Heterozygous alleles may be
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dominant or recessive.® Non-diploid germ cells are called haploid. These are formed by
meiosis, where crossing-over between corresponding chromosomes happens randomly. In
meiosis (germ cell formation), the cell’s chromosomes are duplicated (with possible crossing-
over), but the cell quadruples, leading to 4 haploid cells. This is contrasted with mitosis, where
the cell’s chromosomes are duplicated (without crossing-over) and the cell is then doubled.

While the human genome consists of 23 pairs of chromosomes amounting to a total of
roughly 3 x 10° base pairs, biologists estimate that there are only 10° genes. From the genetic
code, explained later, there are 3 bases that correspond to an amino acid, and most proteins
consist of several hundred amino acids. Assuming that a protein consists of at most 1000
amino acids, a back-of-the-envelope calculation indicates that less than 3 - 103 - 10® = 3 - 108
bp of the genome correspond to genes, while %i%sﬂﬁ a~ 90% of the genome is non-
coding.

Coding regions encode proteins, as explained in Section 1.6.2. In general, the percentage
of the genome consisting of coding regions decreases with increasing complexity of life.
For instance, in the polyoma virus genome, consisting of 5297 base pairs, coding regions
comprise over 90% of the genome [Ben93]. Certain viruses even encode two distinct proteins
within roughly the same genomic region by a shift in the reading frame.’ Indeed, for lower
organisms, the reproduction rate depends essentially only on the DNA replication time, which
in turn depends on genome length (bacteria in ideal conditions can reproduce every 20-30
minutes). However, in eukaryotes, genomic length seems to have little to do with either the
complexity of the organism or time between mitosis.

The so-called TATA box is a consensus sequence consisting of TATA, or close relative
thereof, which is part of the promotor sequence for a gene. The proximity of a TATA box
upstream from the beginning of coding region is an indicator for a coding region, as well as
a terminating hairpin structure and poly-A region at the end. A-T has two hydrogen bonds
as compared with the three hydrogen bonds of G-C, so poly-A regions are less stable, and
especially after a hairpin structure can lead to termination of transcription. An open reading
frame or ORF is a region thought to encode a protein, but for which the functionality is not
currently known.

Humans have 22 pairs of autosomal, or non-sex-related chromosomes, together with either
an X,Y pair (in males) or a X, X pair (in females). DNA is a very thin (width about 10 A) and
long molecule (human DNA, if concatenated from all chromosomes and stretched out, would
measure about 2 meters'?). Generally, more complex organisms have longer DNA, though:
for instance, the lungfish genome is almost 50 times as large as the human genome, and the
Amoeba dubia genome is over 600 Mbp. Some sample genome sizes:

¢ Polyoma virus: one circular chromosome of size 5297 bp.

A-phage virus: one circular chromosome of size 48 502 bp.

E. coli: one circular chromosome of size 4.6 x 10° bp.

S. cerevisiae (yeast): 16 linear chromosomes of total size 13 x 10° bp.
Homo sapiens: 23 pairs of linear chromosomes of total size 3 x 10° bp.

% See Exercise 14 at the end of Chapter 2, following work of P. Pudidk [PP97].
9 Reading frame is explained later in Section 1.6.1.
10 Muitiplying 3 x 10° bp times 3.4 A per bp gives a rough calculation of the length.
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1.4.3 RNA

Ribonucleic acid (RNA) consists of the bases adenine, cytosine, guanine, and uracil (in
place of thymine) attached in a similar manner to the pentose sugar ribose. As shown in
Figure 1.6, ribose has an extra hydroxyl (OH) group at the 2’ position, and so is able to form
more hydrogen bonds than DNA. In deoxyribose, this oxygen atom is missing, hence the
name deoxyribose. Because of the ability to easily form hydrogen bonds, RNA manifests a
number of catalytic properties, including self-splicing activity in certain cases.'! It is generally
believed that an RNA world first existed [PJP98], where RNA played both an information
storage and an enzymatic role.

It is known that cytosine spontaneously deaminates to uracil, and since there is no known
RNA repair mechanism (unlike the various repair mechanisms of DNA, such as SOS, etc.),
RNA cannot be reliably used as a carrier of genetic information. In replicating DNA, uracil
is always removed. Moreover, it is speculated that this spontaneous deamination is the
mechanism for one form of RNA editing, to be explained later. Thus it is believed that, once it
evolved, the more stable DNA gradually replaced RNA in its information storage role, while
enzymatic functions of RNA were gradually replaced by more efficient proteins. There are
certain enzymatic functions still carried out by RNA. It is thought that such instances are
molecular fossils.

In contrast to DNA, RNA is single-stranded, though it can can form Watson—Crick
hydrogen bond pairs (A-T, C-G) and even the weaker pairs A-G with itself, thus forming
hairpin loops and more complicated structures.

Though DNA serves only the function of information storage, RNA serves certain catalytic
functions through its complex 3-dimensional forms. Before describing transcription and
translation, here is an overview of the different kinds of RNA (undefined concepts are
explained in the next section):

1. mRNA: messenger RNA, transcribed from DNA where introns have been spliced out
and pointwise editing performed.

2. IRNA: transfer RNA generally consisting of 70-80 bases having a cloverleaf
secondary struction, and an L-shaped tertiary structure. The anticodon occurs at
the end of a hairpin loop. The corresponding amino acid is bonded to the tRNA by
a reaction involving aminoacyl-tRNA synthetase.

3. rRNA: ribosomal RNA, main component of the ribosomes. Mammals have on the
order of 10° ribosomes per cell. Sometimes rRNA is described using Svedberg units
(denoted by S), which are sedimentation rates in an ultracentrifuge; for instance, 16
S rRNA.

4. snRNA: small nuclear RNA, a molecular fossil [WHR™87] which assists in splicing
nuclear mRNA.

5. gRNA: guide RNA, used to control the editing of mRNA (pointwise nucleotide
insertions or deletions in RNA).

11 In 1981, Tetrahvmena 1-RNA self-splicing was first observed.
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Figure 1.11  General form of an amino acid.

1.5 Proteins
1.5.1 Amino Acids

Proteins are sequences composed of an alphabet of 20 amino acids. An amino acid is a
chemical group of the form given in Figure 1.11, where R is a chemical group (called chain
residue) specifying the type of the amino acid. The central carbon atom is the « carbon
(Ca), the left NH. group is the amino group, and the left COOH the carboxyl group. There
are 20 different chain residues, which have different chemical properties. Residues can be
hydrophobic or hydrophilic, small or large, charged or uncharged.

Two amino acids can be connected via a peptide bond, where the carboxyl group of the first
amino acid reacts with the amino group of the second. The result is a group of the form

e=mmm==s = hackbone

(1.2)

Using the peptide bond, long linear chains of amino acids (i.e., proteins) can be generated.
The ends are characterized by the fact that they have an amino group (resp. carboxyl group)
that is not part of the peptide bond. Thus, one speaks of the N terminus (resp. C terminus) of
the amino acid chain.

The peptide bond itself (indicated with a gray rectangle in (1.2)) is usually planar, which
means that there is no free rotation around this bond.'> There is more flexibility for rotation
around the N-Ca-bond (called the ¢-angle), and around the C-C bond (called the -

'2 There arc two possible conformation rotation angles w of the peptide bond, namely trans (corresponding
to a rotation angle of 180°) and cis (corresponding to a rotation angle of 0°). The cis conformation is rare
and oceurs usually in combination with a specific amino acid, namely proline (which is in fact an imino
acid, i.e.. both ends of proline are connected with the backbone).
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Image not Available

Figure 1.12 Ramachandran plot for 310 proteins. Every dot corresponds to a (¢, ) pair of one amino
acid (except proline and glycine amino acids). Picture taken from {Cre92], page 60.

angle). Nevertheless, the allowed values of combinations of ¢ and ¢ angles are restricted
to small regions in natural proteins (which are displayed on so-called Ramachandran plots,
see Figure 1.12). Using this freedom of rotation, the protein can fold into a specific three-
dimensional structure (called conformation). In natural proteins, the final structure that is
achieved is uniquely determined by the sequence of amino acids. For this reason, one speaks
of the native structure of a given amino acid sequence. The native structure of a protein is
believed to be the conformation that is a free energy global minimum. Terms in the energy
function include van der Waals attraction, electrostatic (Coulomb) forces, hydrogen bonds
between different residues (e.g. between H bound to N and the O in polypeptides; such
bonds are responsible for the secondary structures « helices and /3 strands), salt bridges (ionic
attractions), disulfide bridges (disulfide bond between two cysteines), and hydrogen bonds
with the solvent water.

1.5.2 Protein Structure

The function of a protein is determined by its 3-dimensional structure — for instance,
antibodies in the human immune system recognize antigens by having a complementary
surface to that of the antigen (key and lock paradigm). Enzymes are proteins, which, by
forming a substate to lower the reaction energy, facilitate or accelerate chemical reactions,
which would otherwise might never take place. Because of the importance of the immune
system, immunoglobulins have been widely studied, and hence form a large portion of current
protein databases.'?

13 It is sometimes necessary, as in Sippl's polypeptide folding algorithm discussed in a later chapter, to
obtain an unbiased sampling of the protein database, by requiring that any two proteins from the sample
have, for instance, at most 25% homology. Such unbiased sampling is supported by PDB select. where for
instance PDBselect 30 produces a sample of proteins that pairwise share no more than 30% homology.
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Proteins may roughly be divided into three classes: globular (enzymes), fibril (collagen,
elastin), and membrane proteins. Transmembrane proteins, responsible for pores/channels
in cell membranes, have in part been much less studied because of technical difficulties
in their X-ray crystallography. The Brookhaven Protein Database (PDB) contains the 3-
dimensional coordinates of 10310 proteins'* and 788 nucleic acids, as determined by X-
ray crystallography or nuclear magnetic resonance (NMR).!* See Appendix B.2 for a more
detailed description of an example PDB file.

residue ¢ + 8 residue ¢

residue 7 + 4
Figure 1.13  An « helix. The stabilizing hydrogen bonds are shown with dashed lines.

Concerning the 3-dimensional structure of proteins, there are some architectural features
that are commonly used in natural proteins. These structural pieces are called secondary
structure elements. The two main motifs are o helices and 3 sheets. An « helix is generated by
stacking amino acids in a helix, forming a fixed cylinder (see Figure 1.13). Note that residues
1,5,9,... appear aligned, with residue 7. +4 stacked above residue n in the enclosing cylinder.
A 3 sheet is a structure where parts of the amino acid chain are stacked onto each other in
a linear manner (see Figure 1.14). Since a protein has a direction (from the N terminus to
the C terminus), one distinguishes parallel 3 sheets and antiparallel 3 sheets. In the parallel
form, the folded parts have the same direction, whereas in the antiparallel form, they have
alternating directions.

Certain combinations of « helices and 3 sheets have been identified as motifs (sometimes
called supersecondary structures) common to several proteins. An example is the helix—turn—
helix (H-T-H) motif, often signaling a DNA-binding site.

PDB select tiles can be retrieved by anonymous FTP at ftp . embl-heidelberg.de in the directory
/pub/databases/proteinextras/pdb._select.

14 This figure includes proteins, peptides and viruses.

15 Eigures as of February 2000.
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Figure 1.14  An antiparallel 3 sheet. The stabilizing hydrogen bonds are shown with dashed lines.

The structure of a protein is described on different levels:
primary structure: the amino acid sequence of the protein.

secondary structure: describes the regions in the primary structure where secondary
structure elements (such that « helix, 3 sheets, etc.) occur.

tertiary structure: the 3-dimensional structure of a protein domain in the native
structure. If a protein is dimeric (i.e., is composed of several subproteins), then
the tertiary structure describes the structure of a subprotein.

quarternary structure: the 3-dimensional, native structure of the fully functional
protein.

1.6 From DNA to Proteins
1.6.]1 Amino Acids and Proteins

Amino acids have numerous different chemical properties, including molecular size, electric
charge, etc. It is held that one of the most important driving forces in protein folding is
the hydrophobic force, or tendency for hydrophobic residues to avoid contact with water
molecules and hence form a compact inner core in the protein. Salt bridges (attractions
between oppositely charged residues) and disulfide bonds between the sulfur atoms of cysteine
residues also play a role in the conformation determination. The 20 amino acids found in
proteins are listed in Table 1.2, along with their 1-letter and 3-letter codes, together with a
hydrophobicity value technically called polar requirement [WDD*66] and the designation
‘H’ (hydrophobic) or ‘P’ (polar, i.e., hydrophilic).

The genetic code is now known to be a triplet, non-overlapping, comma-free'® code, where
successive codons consisting of 3 successive RNA nucleotides encode one of the 20 amino
acids or the signal to stop translation. For instance, using Table 1.3, the oligonucleotide

1 2 3 4 5 6 7 8 9 10 11 12
G U U U U A A G U C C U

16 Comma-free means that there is no code for a punctuation mark between two codons. Thus 6 successive
nucleotides code for 2 successive amino acids.
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Table 1.2  Amino acid codes.

AMINO ACID CODE (I ch) CODE(3ch) POLARREQ H/P
Alanine A Ala 7.0 H
Arginine R Arg 9.1 p
Asparagine N Asn 10.0 P
Aspartic acid D Asp 13.0 P
Asparagine or aspartic acid B Asx P
Cysteine C Cys 4.8 P
Glutamine Q Gln 8.6 P
Glutamic acid E Glu 12.5 p
Glutamine or glutamic acid Z Glx P
Glycine G Gly 7.9 p
Histidine H His 8.4 p
Isoleucine I lle 4.9 H
Leucine L Leu 4.9 H
Lysine K Lys 10.1 P
Methionine M Met 5.3 H
Phenylalanine F Phe 5.0 H
Proline P Pro 6.6 H
Serine S Ser 7.5 P
Threonine T Thr 6.6 P
Tryptophan w Trp 5.2 H
Tyrosine Y Tyr 5.4 P
Valine \% Val 56 H

codes for the amino acid sequence Val Leu Ser Pro if the reading frame begins at
position 1, while it codes for Phe Stop if the reading frame begins at position 2, and Phe
Lys Ser if the reading frame begins at position 3. To complicate matters, in double-stranded
DNA there are three additional reading frames possible for the reverse complement strand. In
prokaryotes and eukaryotes, the reading frames of different proteins do not overlap. This is
different in some viruses, where the need to compactify the genetic information may lead to a
situation where different reading frames for viral proteins overlap greatly.

There is much interesting speculation about the origin of the genetic code (see (HHII,
FHY8, KSH95, ELT*89]). It is thought that in the protobiotic RNA world, different genetic
codes may have existed, in which case pressure from natural selection would have optimized
both the codes and translation machinery, until, as F. Crick has suggested, a frozen accident
occurred with the emergence of life, meaning that further random mutations would most
likely be detrimental to living organisms. Two rather different views for the emergence of the
genetic code have been proposed. In the late 1960s, Crick suggested that few amino acids were
initially encoded, that with time, more amino acids were encoded using similar codes to those
that then existed, and that tRNA and aminoacyl-tRNA synthetases were derived from those
already existent. In 1973, C. Woese et al. [WDD™66] proposed that stereochemical affinities
between codons and respective amino acids exist, that early translation mechanisms were
imprecise, and that ancestors of tRNA were capable of recognizing only classes of codons,
rather than unique codons. In particular, Woese et «l. introduced a measure of hydrophobicity
of amino acids, and noted that amino acids having A (resp. ') as middle codon are hydrophilic
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Table 1.3  Genetic code.

U C A G
Phe Ser Tyr Cys [ U
Phe Ser Tyr Cys | C
U | Leu Ser Stop Stop | A
Leu Ser Stop Trp | G
Leu Pro His Arg [ U
Leu Pro His Arg | C
C|Leu Pro Gln Arg | A
Leu Pro GIn Arg | G
Ille Thr Asn  Ser | U
Ile Thr Asn  Ser | C
A| lle Thr Lys Arg | A
Met Thr Lys Arg | G
Val Ala Asp Gly | U
Val Ala Asp Gly | C
G| val Ala Glu Gly | A
Val Ala Glu Gly | G

(resp. hydrophobic), while the nucleotide adenine (resp. uracil) is chemically hydrophobic
(resp. hydrophilic). As later explicitly stated in [HH91], middle anti-codon positions with A
(resp. U) are thus associated with hydrophobic (resp. hydrophilic) amino acids. It has also
been suggested by M. Eigen and P. Schuster that the original code was of the form RNY,
meaning purine, followed by any nucleotide, followed by pyrimidine.

1.6.2  Transcription and Translation

A segment of a chromosome, corresponding to a coding region (a region that gives rise to a
protein), is often preceded by a promotor sequence, usually consisting of a rough consensus
pattern of TATAA . .. (called a TATA box) as well as other sequence signals. RNA polymerase
is capable of recognizing the promotor sequence, and after DNA strand separation in the
coding region occurs, RNA polymerase assists in the transcription of DNA into a pre-edited
form of messenger RNA called the RNA transcript. The transcription occurs in the 5’ to
3’ direction, where the DNA nucleotides A, C, G, T are respectively transcribed into RNA
nucleotides U, G, C, A.

There are different models for the transcription and translations in prokaryotes (i.e.,
bacteria), and eukaryotes (non-bacteria; e.g. unicellular paramecia, and all plants and
animals). Prokaryotes are cells that have no compartment to separate genomic DNA from the
cytoplasm'” and no membraneous organelles, and have one circular chromosome. The reading

'7 The cytoplasm is the cell contents (including organelles) within the plasma membrane, without the nucleus
in the case of eukaryotes.
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frame for the transcription of a proteins is continuous, i.e., not interupted. Eukaryotes on the
other hand, do have a compartment, called a nucleus, to separate DNA from the cytoplasm,
have membraneous organelles (e.g. mitochondria), and generally have more than one linear
chromosome. The reading frame for a protein is not continuous, but rather is disrupted by
introns (or interveaning sequences). Phillip A. Sharp and Richard J. Roberts discovered
introns in 1977, for which they later later received the Nobel Prize. The remaining segments
between the introns are called exons. Either by self-catalysis, or facilitated by enzymes, the
introns in the RNA transcript are excised and removed (see Figure 1.15). In proteins, a similar
splicing occurs, where the removed segments are called inteins and the remaining segments
exteins. Moreover, it is an important algorithmic problem in bioinformatics to determine
intron/exon splice sites.

Eukaryote Prokaryote
nucleus

‘ Transcriptjon

mRNA

Protein |

Protein

Figure 1.15 The different models of transcription and translation in prokaryotes and eukaryotes.

After removal of introns,'® it may occur that nucleotides are inserted or deleted (pointwise,
non-consecutive insertions and deletions). This phenomenon is called RNA editing, and, at
least in the case of kinetoplastid protozoa [VHBS 92, is directed by guide RNA (gRNA). That
editing occurs in most living organisms is truly remarkable, since the protein coded by mRNA
after editing may have nothing to do with the protein that would have been coded by mRNA
betore editing occurred. This is because the genetic code is a triplet, non-overlapping code,
and an insertion of one nucleotide effectively shifts the original reading frame, producing
codes for possibly completely unrelated amino acids.

Transfer RNA (tRNA), whose existence was first postulated by F. Crick in his adapter
molecule hypothesis, is a small (around 70 bp) RNA, having a cloverleaf secondary structure
and an L-shaped tertiary structure. At the extremity of the middle lobe of the cloverleaf lies an
anticodon, i.e. three nucleotides, whose Watson—Crick reverse complement is a triplet codon
for an amino acid, as given in Table 1.3. Aminoacyl-tRNA synthetase assists in the attachment

I Mammalian mitochondrial DNA and generally prokaryotic DNA have no introns.
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of the correct amino acid to tRNA, i.e. the amino acid whose codon is the reverse complement
of the anticodon in the tRNA. Despite the fact that, with the exception of mitochondria and
certain bacteria, the genetic code is essentially universal, different organisms may prefer the
usage of certain codons for particular amino acids. In particular, an organism may have no
tRNA for particular codon, or may produce no aminoacyl-tRNA synthetase for that codon.
For instance, leucine aminoacyl-tRNA synthetase was not found in M. jannaschii, as reported
in [BWO™96).

Ribosomes are cytoplasmic complexes constituted from ribosomal RNA (rRNA) together
with certain proteins, and form a surface for mRNA (after intron removal and possible editing)
and tRNA to assemble amino acids together in a linear chain, thus forming a protein. This
process is called translation. Eukaryotic translation usually begins with the codon for the
amino acid methionine, which serves as a start codon. Methionine may later be removed from
a functional protein.

It is known that certain proteins, called chaperones, are found in the vicinity of
ribosomes, and are responsible for refolding incorrectly folded proteins, or ensuring their
destruction, when correct refolding does not occur. Chaperones recognize incorrectly folded
proteins, because of hydrophobic'® residues on the protein’s surface (rather than in the
core). At least for one particularly well-studied class, chaperones are known to have a
cylindrical 3-dimensional structure with hydrophobic-rich interior walls. When a protein
with a hydrophobic surface lies within the chaperone’s walls, the chaperone undergoes a
conformational change causing the inner walls to become hydrophilic and the ‘lid’ of the
cylinder to clap shut, thus providing an inert ‘test tube’ medium, allowing the protein to refold
correctly.

DNA replication occurs in a similar fashion as RNA transcription, but facilitated with DNA
polymerase, as opposed to RNA polymerase. After DNA strand separation begins to occur
(i.e. as the ‘zipper’ proceeds to unzip), the adjoining of complementary nucleotides to the
template strand always occurs in the 5’ to 3’ direction, because of the high-energy phosphate
group at the 5’ end of the nucleotide. This occurs without major difficulty along one template
strand, but is more complicated along the other template strand, since the 5’ direction lies at the
border between the ‘zipped’ and ‘unzipped’ portion of the partially separated double strands.
The replication error rate along this latter strand is significantly higher. Various correction
mechanisms for DNA replication, including the SOS system, reduce the final replication error
rate to less than 1 in 10°.

The above description of DNA replication holds for mitosis (cell division) as well as meiosis
(germ cell formation). In mitosis, though DNA can in principle be replicated forever (eternal
life), the accumulation of replication errors is thought to lead to dysfunctional cells, cancerous
cells, etc. In meiosis, in addition to pointwise mutation caused by DNA replication errors as
just explained, another source of mutation, essential for evolution, consists of inversions and
transpositions as well as crossover.

1.7 Exercises

1. Use the software RasMol to view DNA and certain proteins and protein motifs.
Procure a PDB file of a TATA box in the promotor sequence in DNA. Note the bend

19 Hydrophobic amino acid residues, as contrasted with hydrophilic (polar) amino acid residues. avoid
contact with water molecules and tend to lie buried in a protein’s core.
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in the DNA at this point, thus allowing RNA polymerase to recognize transcription
origin.

2. Write an efficient program to recognize palindromes within a genome, and test it on
the genome of M. jannaschii. In computer science, a palindrome is a word of even
or odd length in a finite alphabet, which reads the same forwards as backwards.
In biology, a palindrome generally means a word of even length in the alphabet
A,C.G.T such that, the ith character from the beginning can form a Watson-Crick
pair with the ith character from the end of the word.

3. Goto the Protein Data Base (PDB, http: //www.rcsb.org/pdb/). Search for
a structure of the human hemoglobin molecule. What is the PDB code? What is
the classification of this protein in the CATH (Class, Architecture, Topology, and
Homologous superfamily) hierachy?

Retrieve the structure in RasMol format. View the heme group (which is the group
enclosing the iron atom) in red.
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Math Primer

Probability theory is nothing but ‘common sense reduced to calculation’.
Laplace'

An important aspect of computational biology is the development of mathematical models for
biological processes, together with the design of efficient and sensitive algorithms. Biological
processes depend on random events, diffusion, etc. so that mathematical models are often
stochastic. In this chapter, we review fundamental mathematical concepts necessary for
bioinformatics — namely concepts from probability theory, information theory (entropy), and
combinatorial optimization techniques.

2.1 Probability

Ants and wasps diverged from a common ancestor roughly 100 million years ago (100
My). Despite physical similarities such as abdominal poison glands, ants are social insects
living in a hierarchically organized manner in nests of 200000 to millions of individuals,
whereas certain wasps (such as Cynipidae and Sphecoidae) are solitary. Ants seem to display
a cooperative, altruistic behavior, putting the welfare of the group above that of self. Why?
A commonly advanced theory is that, on average, worker ants share % of their sisters’ genes,
whereas wasps, on average, share only half their siblings’ genes. Let us use this example as a
starting point in recalling some basic concepts of elementary probability theory.

Suppose that a female wasp has the alleles A and B of a given gene, while a male wasp has
the alleles @ and b. When male and female wasps mate, the possible allele combinations of
female AB and male ab are Aa, Ab, Ba, and Bb. Suppose that one offspring (Fred) has allele
combination Aa (all other cases are analogous). A second offspring (Ethel) has i chance of
being any one of the four previously listed combinations. The average number of shared genes
is 2H14140 = 1, where in each of the four possible cases we have the following number of
shared genes: Ethel is Aa (2), Ethel is Ab (1), Ethel is Ba (1), Ethel is Bb (0). Since on
average two sibling wasps share 1 gene, out of a total genome of 2 genes, they share 50% of
their genes.

Consider, in contrast, what happens when a queen ant Aa mates with a drone BB’, where
B' is identical to B.? The possible allele combinations of worker ants are AB, aB, AB',
and aB’. Suppose one offspring (Lucy) has allele combination AB (the other cases are

! Pierre Simon Marquis de Laplace, French mathematician and physicist, 1749-1827.
2 An unfertilized ant egg develops into a male drone ant.
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analogous). The average number of genes shared between Lucy and a second offspring (Ethel)
is Mfﬁ = 1.5, where in each of the four possible cases we have the following number of
shared genes: Ethel is AB (2), Ethel is AB' (2), Ethel is aB (1), Ethel is aB’ (1) Thus on
average two sibling worker ants have § 7 = 1.5 genes in common, and hence share 1> = 75%
of their genes.

Let us now recall standard notions from probability theory. The frequency of event A in an
experiment consisting of n trials is n(A)/n, where n(A) is the number of times 4 occurred in
the n trials. A sample space €1 is a non-empty set of mutually exclusive elementary events
e: for instance, in @ = {H,T}, the elementary events are ‘heads’ and ‘tails’, while in
2 ={1,2,3.4,5,6}, the elementary events are the outcome of the roll of a die.

Suppose that 2 is a discrete sample space, i.e., {2 is either finite or countably infinite (in
one-to-one correspondence with the set N = {0, 1,2, ... } of natural numbers). In this case, an
elementary probability function p on (2 is a map from 2 into the unit interval {0, 1], such that
Y ecqple) = 1.For 4 C Q, define Pr(4] = 3., p(e). Clearly, the following properties
are satisfied:

1. Prid) =0, PriQ?) =

2. Prf—-4]=1- P7[A]

3. Pr[AUB] = Pr[d] + Pr[B] — Pr[An B], forall 4, B C Q. This is called the
addition law.

The probability of event e € Q2 is then Pr[{e}] = p(e).

In the general case, where 2 may be a discrete or continuous sample space, a probability
function Pr is a mapping from the power set P(2) of all subsets of ( into the unit interval
0. 1] that satisfies the previous three conditions.

The expression (m) = F(E’T)' counts the number of ways of choosing m element subsets
of an n element set. These are the binomial coefficients ; i.e. () is the coefficient of 2™ in
the expansion of (1 + x)". Taking = 1 in this expression yields

n
(7)==
im0 \*!
Moreover. for A < &,

An

Z (") < 9h(A)n

i—o \!

where h(A) = —Alog,(A) — (1 — A) log, (1 — A) is the entropy of the probability distribution
(A, 1 — X). The multinomial coefficients generalize this, in that there are
!
L Q2.1
nylna!- - ng!
many ways of partitioning n into k classes, where the ith class has n; elements, so that
n=mny+---+ng.

THEOREM 2.1 (STIRLING’S FORMULA)

n! ~V2rn (%)" ,

where f ~ g means lim,,_, ﬁ—) =1.
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For 4, B C Q, we often write Pr[A N B] as Pr[A, B].

DEFINITION 2.2 (CONDITIONAL PROBABILITY)

Pr{A|B] = P—;%—,—’ﬁl. Events A, B are independent if and only Pr[A, B] = Pr[A] Pr[B].
i.e., if and only if Pr[A] = Pr[A|B].

DEFINITION 2.3 (TOTAL PROBABILITY FORMULA)

Assume that By, ... , B, are mutually exclusive and exhaustive; i.e. B; N B; = (. for all
distincti, j, and QQ = By U ---U B,,. Then

PriA] =Y Pr{A|Bi]Pr[By].
k

Note that Pr{A|B] = ZH:2l and PriBl4] = F471 so that Pr{a|B] Pr(B] =
Pr[B|A] Pr[A]; hence
Pr{A|B] Pr[B]
Pr[A] '
This and its generalization are known as Bayes’ rule.

Pr[B|4] =

THEOREM 2.4 (BAYES' RULE)

Suppose that the hypotheses By, . .. , B,, are mutually exclusive and exhaustive events. Then
Pr[By] Pr[A|By]
Pr[Bi|4] =
Bl 4] Pr{A]

PT[Bk] PT’[AIBk]
;::1 P?‘[AlBk] PT‘[Bk] '

In Bayes’ rule, the B; are considered intuitively to be the hypotheses responsiblie for event
A. This has applications in hidden Markov models, discussed in a later chapter.

2.1.1 Random Variables

DEFINITION 2.5
A random variable X is a function X : Q@ = R.

We shall usually consider discrete random variables; in the continuous case, one requires a
random variable to be a measurable real function.

In the discrete case, we write Pr[X = z] to mean Pr[{e € Q|X(e) = z}] or
Y eeaix(e)=c P€). Then 3777 Pr[X = z] = 1. In the continuous case, for given r € R,
it is usually the case that Pr[X = z] = 0, so a probability density function py : R — R is
defined for a continuous random variable X to satisfy

Prla< X <b = Pr[{eecQ]a< X(e) <b}]

/abpx (z) dz.

Note that ffooo px (x)dx = 1. The distribution function for a continuous random variable X
is

i

Px(z) = /I px (y) dy,

— o0



26 COMPUTATIONAL MOLECULAR BIOLOGY

so that b
Prie< X < = #x(8) - #x(0) = [ px(o)de
a
The expectation (also called the mean or average) of discrete random variable X, denoted
by E[X] or sometimes (.X'), is defined by

o

E[X]= ) iPrlXx =i]

1= —0C

and in the continuous case

E[X] = /_OC zpx(z)de.

o

From the definition, it is easy to see that expectation is linear in the sense that E[a.X + bY]| =
aE[X] + bE[Y], for constants a, b. Moreover for independent random variables X, X,

E[‘Yp\'z] = E[‘Yl]E[)&’)]

Note that Y| < X, implies E[X,] < E[X,].
The mean square or second moment of X is defined by

o
E[X?) = Zm2 PriX =z

for discrete random variables and

B = [ sty ds

o0

in the continuous case. In general, the rth moment is defined by
oC
E[X"] = Zwr Pr(X = 1]

respectively
:,o
E[X"] =/ " px(r)dz.

20

The variance V[.X] is defined as the second moment of X — p, where ¢ = E[X]. In other
words,

VIX] = E[X-p)?
= E[X?| - 2uE[X]+4*
= EX?-2u®+4?
= E[X?] - u?

The standard deviation o satisfies 0(X) = \/V[X]. From the above, V[cX] = ¢?V'[X] and,
in the case that X, Y are independent random variables, the variance is additive:

VIX + Y] = V[X] + V[Y).
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2.1.2  Some Important Probability Distributions

The uniform distribution satisfies

, 1
Pr[X =w] = 9]

in the discrete case, while in the continuous case, X is distributed uniformly on the real
interval [a, b] if

d

dz d—c

Prie< X < = =
re< X <d /c b—a b-a

where the density function
& ifa<z<b
) — b—a ST
px (@) = { 0 otherwise.

In the continuous case, the expectation is

/b x b2 —a®> a+bd
dr = =
—a T 2=~ 2

and the variance is

/b a? dr_(a+b)2 ¥ -a _(a+b)2

e b—a 2 3(b—a) 2

b +ab+a? a®+2ab+1?
3 B 1

b? — 2ab + a?
12 '

Binomial Distribution

A Bernouilli trial is an experiment with probability p of success; i.e. a Bernouilli random
variable Y : 2 — R where Y takes only the values of 0, 1 (1 for success, O for failure). Trials
are independent, so, letting X be a random variable counting the number of successes in n
trials,

n

b(n; k) = Pr[X = k] = (k)pk(l —p)n k.

The random variable X is said to be binomially distributed. Note that X = Y| +--- + Y7,
where each Y; is an independent Bernouilli random variable. Since E[Y;] = p, and 17[};] =
E[Y?] - E[Yi]?> = p — p* = p(1 — p), it follows by additivity of expectation and variance
(the latter requires independence) that

EX]|=np

and
V[X] = np(1 - p).
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If the number of trials 7 is large and the number k of successes is small, then a good
approximation is

nk
b(n; k) = Pr(X = k] ~ %e-“w),

where np is the expected number of successes. The latter is the Poisson distribution, which
we shall soon discuss.

The multinomial distribution generalizes the binomial distribution to the case where there
are m possible outcomes of an experiment. If p; is the probability of outcome i in one trial,
then the probability P[X = (n1,... ,n,;,)] that in n successive trials, there are n; outcomes
of outcome i is defined by

!
n! -
I Py
Ny Ty

m

Mminy,... . np)=PX =(n,...,ny)] = Y

The multinomial distribution naturally models repeated rolls of a die.

Geometric Distribution

Consider the previously defined Bernouilli random variable X' with probability p of success.
The random variable .X has the geometric distribution if forall k € N,

PriX =k]=(1 —p)k"lp.

In this situation, X can be interpreted to count the number of experiments performed before
a successful outcome is realized.

Suppose that p < 1, and denote 1 — p by ¢. Then a computation shows that the expectation
satisfies

E[X]

I

- idi
4(5
rig (r3)

—
H

—q

'U'I»—'
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A similar computation yields the variance V[X] = E[X?] — E[X]?, as follows:
o0

E[X? = Zk2qk_1p
k=0

id
= py — (k¢*)
k:Odq
d o0
= p— kq*

= v ()

_ 1+4¢
(1-gq)?
_ 1+¢
= -
so that
Ty te 714 1+q 1 q
VIX]=E[X?] - EX)? = o

Poisson Distribution

A random variable has the Poisson distribution with parameter X if

p(k;A) = Pr(X = k] = Ze™?

for k£ € N. Recall that the kth term in the Taylor expansion of e” is f'-: sothat 3~ .2 %G‘A

. s A . . .
is e 322, 47 = e"*e* = 1.1t turns out that both the expectation and variance of " are
given by A. The expectation is given by

EX] = ) kﬂe—*
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Note for future reference that it follows that 3,7 % = Ae*. The second moment is given
by

E[X?] = ZkQH(f“’\

Thus
VIX] = E[X?] - E[XPP =X+ A - X =\

The Poisson distribution is often used in modeling situations in biology where events occur
infrequently. In particular, in Section 4.2.1 of Chapter 4, the substitution of nucleotide bases
is modeled as a Poisson process. While the Poisson distribution models the number of events
that occurred within a given time interval, the exponential distribution models the interarrival
time between two occurrences of events.

Normal Distribution
The continuous random variable X' with density

1 2y
px(z) = e
is said to have a normal or Gaussian distribution. The graph of density px is the familiar
bell-shaped curve. The integral defining the distribution,

¢X ([,C) = ()‘“2/2 du‘

7wl

cannot be evaluated in closed form, and so must be approximated numerically. By symmetry
of the bell-shaped curve,

E[X] = \/—%/ ze " dr =0
—

and integration by parts,

V(Y] = E[X?] - E[X]* = / Cr2em 2 dp — 2

—0C

e o, —x2)2
= /‘m(*r)—%ﬂ—— dx
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shows that V'[X] = 1. In general, a random variable X' with density

1 07(17;1)2/'2:72
2no

plr) =

is normally distributed with mean y and variance o2. In this case, we shall say that X' has
distribution A'(y1, o). It can be computed that about 68% (resp. 95%) of the area under the
curve given by the normal density function p(x) lies within 1 (resp. 2) standard deviations o
(resp. 20) to either side of the mean. In biological applications, it is sometimes assumed that
data is normally distributed, so that if the data average is i and standard deviation is o, then
one states that the value from the data is p« & o (resp. jt & 20), where o (resp. 20) is called the
standard error (this often appears in [Nei87]).

The central limit theorem states that in the limit, the distribution of the sum of n
independent identically distributed random variables having finite mean and variance is
normally distributed.

THEOREM 2.6 (CENTRAL LIMIT THEOREM)
Let X3, X», ... be independent, identically distributed random variables, having finite mean
Jt and finite variance o2. Consider the sum

n

Sn = Zl X;

of the first n random variables, and consider the normalized sum

* Sn - E[Sn] _ Sn — N

Y R

Then
1 b "/2
lim Prla< S <bl=— [ e *7/2
n—oc [ - n - ] \/ﬂ a
Since convergence is fast, even for n = 10, S} = 9\,/—_/"122 is close to normal. This
n

observation furnishes an easy algorithm to generate random values with a normal distribution,
given a uniform random generator. For X a uniformly distributed continuous random variable
with values between 0 and 1, by previous discussion, E[X] = 1/2 and V[X] = 1/12.
(We shall assume that a computer’s pseudorandom real generator yields such values.) By
the central limit theorem,

g* Sn—n/2

" /nj12

is approximately normally distributed with mean O and variance 1. By earlier remarks about
additivity of expectation and variance, it follows that E{u + 0X] = p + ¢E[X] and
V{p + 0X] = 06?V[X]. Thus p + oS}, has mean y and variance o2.

These remarks justify the following code, where we renormalize S;; to have a given mean
and variance, so the output real values are normally distributed with mean and variance given
by the function parameters:
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double normal ( double mean, double variance ) {
const int N = 20;
int i; double x=0;
for (i=0;i<N;i++) x += {(double) rand()/ RANDMAX;
return (mean+sgrt(variance)*(x-N/2.0)/sqrt(N/12.0));

}

A more efficient algorithm is due to Box—Muller (see [Knu81]):

double boxMuller ( double mean, double variance ) {
double u,v,x,Vy;
x = (double) rand()/RANDMAX;
Y (double) rand()/RANDMAX;
u sgrt(-2*log(x)) *cos (2*M.PI*y);
// M_PI is approx to PI = 3.14159...
return(u) ;

}

Hypergeometric Distribution

Suppose there are n balls in an urn, r of which are red and b = n — r of which are black, and
that 1 < n balls are chosen at random without replacement. The discrete random variable X
has the hypergeometric distribution if

() G
()

where Pr[.X' = k] is the probability that out of 1 randomly chosen balls, exactly k are red.
If p, ¢ are probabilities with p+¢ = 1, and there are r» = pn red balls (resp. b = n—1r = ¢n
black balls), then with probability
(3’:) pkqm —k

there are exactly k red balls when choosing m balls with replacement from an urn containing
n balls. For large n, the hypergeometric distribution can be approximated by the binomial
distribution: h(rn, rim. k) ~ b(m: k) (see p. 50 of [Fel68a]). Specifically, for p = - we have

m " m—k\"k m
p— - q— : < h(n.k;m, k) <
k n n k

It follows that for large populations, there is hardly a difference between sampling with and
without replacement. Later we shall see an application of the hypergeometric distribution in
a segmentation algorithm for finding regions of the genome with approximately the same
entropy.

hin,rym k) = Pr[X = k] =

k m—*k m ) o
) 1-— .
P g ( "
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Exponential Distribution

Fix a > 0. Then
et ift >0,

ft) = { 0 otherwise

is the density function for the continuous random variable X' with exponential distribution,

and
T—e ot ift >0,
F(t) = { 0 otherwise
1

is its distribution. Straightforward integration by parts shows that E[X] = L and V[X] = J;.
The exponential distribution models interarrival time between events (such as mutation of a
nucleotide), where there is no memory of previous events having occurred — for instance, a
nucleotide mutation is just as likely to occur at a mutation site as an non-mutation site of a
previous mutation.

Following [Gar86], we derive the exponential distribution from first principles concerning
interarrival times for successive events. Let u be the mean interarrival time between successive
events, let At be a small, fixed interval of time. Divide the time interval t into ﬁ many

subintervals. For very small At,
. . o . At
Prthere is an arrival within A¢ time] ~ —,
7

so that

. . - : At
Pr[there is no arrival within At time] &~ 1 — —.
i

Assuming that the probability of an arrival in any one of the ﬁ subintervals is independent
of whether an arrival occurred in any other subinterval, we have

t

. At at
Pr[there is no arrival within time ¢] = (1 - —) .
1

so by taking the limit as At — 0, it follows that

. . R L
Prthere is no arrival within time t] = e~ #;

hence
Prthere is an arrival within time ] = 1 — e ».

This is a derivation of the exponential distribution

1—-e 2 ift>0,
F(t) = { 0 otherwise,

where the mean interarrival time y is %
For computer simulations, one can produce an exponentially distributed random variable
for a given mean interarrival time p as follows. Let X be a uniformly distributed continuous
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random variable with 0 < X < 1. Note that Pr[X > x] =1 — . Then

1—e
= PrlX > e'ﬁ]

Pr[ there is an arrival in time ¢]

= Pr [ln X > —i]

7
= Pr[-plnX <t].

Thus repeatedly evaluating — . In X for uniformly distributed random real 0 < X < 1 yields
a sequence of interarrival times with mean interarrival time of u. This could be used, for
instance, to simulate the interarrival time for nucleotide substitutions, explained in Chapter 4.
Here is C-code fragment for the exponential distribution, whose mean is given by the function
parameter:

double exponential ( double mean ) {
double x;

X = (double) rand()/RANDMAX;
return (- mean*log(x) );

}

The following theorem states a connection between the exponential and Poisson
distributions.

THEOREM 2.7 (FELLER [FEL68A})
Let X|, Xy, ... be independent, identically distributed random variables with exponential
distribution

1—e 0 ift>0
Ft) = { 0 otherwise.

Consider the sum S, = %" | X; of the first n random variables, and define the random
variable N (t) so that N(t) = n holds exactly when S,, < t and S,,;, > t. Then

n
Pr[N(t) =n] = (”“'—(at') ,
n!

so that N (t) has a Poisson distribution with parameter ot.

It follows that given % as the mean interarrival time, the probability that within time ¢ there are

exactly n arrivals is approximately p(n; a) = {at)? o~at Thus the exponential and Poisson

n!
distributions are closely related.
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Boltzmann Distribution

In the latter part of the 19th century, L. Boltzmann® reasoned that in an ideal gas having N

molecules, the number N; of molecules having energy E; satisfies
N, = Ne_Ei/kT
t Z

where k is the Boltzmann constant having value 13.805 x 10~2* J deg™". T is the absolute
temperature in degrees Kelvin, and Z, called the partition function, satisfies

7= BT,

SEQ

where () is the finite set of possible energy states. For applications in computer science, such
as in the Metropolis—Hastings algorithm, the Boltzmann constant k is often dropped, and the
Boltzmann distribution, sometimes called the Gibbs distribution, is defined by

o—Ei/T

pr(i) = 7 (

o
(}S]
-

The Boltzmann distribution appears almost magically as that probability distribution
Pi.- .. .pn having maximal entropy H(py.... .p,) = — i, pi log,(p;) for which a given
average energy (E) is the expected value

n

(E) = Z piE;.

i=1

This will be proved later, but is the basis for a remarkable analogy between a collection of
ideal gas molecules and a representative database of protein conformations, a topic we shall
pursue later when concerned with protein folding. In particular, following [Sip90, Kr696] we
shall see later how to apply Boltzmann's law to determine energy functions, called amino
acid pair potentials, computed from frequencies of amino acid pairs, as measured in from a
representative sampling of known conformations in protein databases.

At high temperature T', the Boltzmann distribution is close to the uniform distribution,
while at positive temperature close to 00, the Boltzmann distribution is concentrated on the
global energy minimum. In particular, if the energy function takes on a unique minimum in
state ig € S, then for positive T & 0,

1 ifi =1,
0 otherwise.

pr(io) = b1y (i) = {

A computation illustrates this point well. For example, the following table gives sample
energies E; for 10 states, along with Boltzmann probabilities pr(i) = "7?” for temperature

T =10"%

3 Ludwig Boltzmann, Austrian physicist, 1844—1906.
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i E(7) pr{i)
1 | 0.53522821 | 3.3666 x 10!
2 | 0.50190333 | 0.99999979
3 | 0.53884837 | 9.0152 x 10~!7
4| 0.54406764 | 4.8783 x 10~1°
5| 0.53822782 | 1.6768 x 10718
6 | 0.56446537 | 6.7554 x 1028
71 0.57723159 | 1.9291 x 10733
8 | 0.55286341 | 7.3845 x 10~23
9 | 0.51729184 | 2.0742 x 10~ 7
10 | 0.52294047 | 7.3061 x 1070

To prove that at high temperature, the Boltzmann distribution is approximately the uniform
distribution, while at low temperature, the Boltzmann distribution is concentrated on the
global energy minimum (or minima), following [Wat95], we proceed as follows.

Let (Q be a finite set of states, and assume a given energy function £ : () — R. Suppose
that the global energy minimum my = min{E(v) | v € @} is achieved exactly at the values

Qo={veQ|EWw= n'leigE(u)} ={v1,..., 0}

For a fixed temperature T', define

e—E()/T
ZweQ e—E(w)/T’

7mr(v) is the probability that system is in state v. Clearly Y #r(v) = 1. Two limiting
veEQ
distributions are when the temperature is 0 and infinite; i.e. mg, ., where

mr(v)

mov) = lim, 77(v),

Too(V) = Th_I)nx nr(v).

CLAIM 2.8
7o(v) = 1 ifmg = E(v)
771 0 otherwise.
PROOF
. e~ Ev)
Tol(v = lim _Téu_—
( ) T0+ Sweq € E(uw)/T
— 1 1
= Tlgl(}‘*‘ cE(V/T Eweo e—E(w)/T
= lim L .
0y Tueq AE-E@N/T
CASE 1:v € {v,... vk}

Then w € {vy,..., vy} implies that E(w) = E(v) and so

lim el -E@/T =
70+
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while w ¢ {vy,...,v;} implies that E(w) > E(v) and so

1 1
: [E-E@WYT _ iy o hm o
e € = 0, TEw BT = 0 s B O
So altogether

(v) 1 1

TolV) = N = -.

1 [E(v)—E(w)l/T k

2 weq Jim e

Case2:v ¢ {v1,..., v}
Let wg be a global minimum for E; i.e. wo € {vy,... ,vx}. Then E(v) — E(wo) > 0, so

. 1 i l
Tli)n& ZwEQC[E(U)—E(w)]/T s Tllrrg+m
= i !
= M G B E(wol]
1
= — =0.
00
Thus
= { b irvisa lobal minimum of £
%)= 0 otherwise.
[ ]
CLAIM 2.9 1
77'00(”) = |_|_
PROOF
e~ E0)/T
) = lim ~  _E(uV/T
Troo(z‘) Tooc Z e—E(w)/T
weQ
- 1 L
= Tl—I)r;o Z e(E(u)—E(u’))/T
wEQR
_ 1
= T €0
weQ
_ 1
QI
[ ]

In summary, 7y is uniformly concentrated on global energy minima, while 7 is uniformly
distributed on Q.

We will soon see that the concentration of the Boltzmann distribution on the global energy
minima can be exploited to devise an algorithm to solve combinatorial optimization problems.
Specifically, the Metropolis—Hastings algorithm (also called MCMC or Markov chain Monte
Carlo algorithm) performs a walk on the state space for the given combinatorial optimization
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problem, where a random neighbor of the current position is chosen with uniform probability,
and a move to that neighbor is allowed (i.e. an update of the current position) if either the
neighbor has lower energy (greedy step) or with Boltzmann probability when the neighbor
has higher energy. Here, temperature plays only a formal role, in regulating the likelihood
of performing an update of the current position to an energy-unfavorable neighbor. While
unnecessary from our computational standpoint, we make a few closing remarks concerning
the role of the Boltzmann distribution in chemistry [Pau70].

The Gibbs free energy G in a system (of gas molecules at equilibrium, or a solution of
molecules. etc.) satisfies

G=U-TS (2.3)

where [ is the enthalpy or heat content (in the case of DNA in solvent under physiological
conditions. enthalpy comprises the energy from the ionic, hydrogen and covalent bonds, etc.),
T is the absolute temperature in degrees Kelvin and S the entropy or measure of disorder. Thus
equation (2.3) states that free energy is the difference of ordering forces minus disordering
forces. Since inner energy and entropy cannot be measured directly, in laboratory experiments,
one usually measures the changes, i.e.

AG = AU - TAS.

For an ideal gas at temperature T, the difference AG in free energy between the gas at
pressure P2 and at pressure I of 1 atmosphere satisties

AG = —-RTIn (2) ,

0

where R is the gas constant having value 8.3146 J deg™" mole . Moreover, Bolizmann’s
constant k = /N, where N is Avogadro’s number 6.0229 x 10%*. It follows that

P = Pye st (2.4)

- —AG . . .
and it 1s exactly the term e 7° which appears in the Metropolis step of MCMC, as we shall
see later.

2.1.3 Markov Chains

Consider a physical process having discrete observable states, which when we monitor over
time, yields the sequence qg, ¢, ¢2, . . . of observed states. A (first-order, time-homogeneous)
Markov chain is a stochastic model of this system, whose main property is that the state at
time ¢t + 1 depends only on the state at time ¢. For instance, protein folding can be modeled
by such a Markov chain, where the states are possible conformations on a lattice.

To formalize this concept, we need a few definitions. Throughout, only finite Markov chains
are considered. A stochastic matrix is an n X n matrix of non-negative values, each of whose
rows sums to 1. A doubly stochastic matrix has the same property for its columns, and a
substochastic matrix is a non-negative matrix, each of whose rows sums to a value less than
orequal to 1.

Let @ = {1,...,n} be afinite set of states, and consider the initial probability distribution
7 = (p1....,Pn). considered as a row vector, and the n x n stochastic matrix P = (p; ;). A
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(first-order, time-homogeneous) Markov chain M = ((Q, m, P) is a stochastic process, whose
state ¢; at time £ is a random variable determined by

Prigo =i = m,
Prigi41 = jla = 1] Dij-

Define p;(t) = Pr[g: = {] and piij) = Prlq; = jlqo = i]. Clearly. the (i. j)th entry of the tth
(t)

;,j» moreover, by time-homogeneity it follows that piij) = Prlg, 1 =

power P! of P equals p
Jlat, = 1), forall to.

DEFINITION 2.10 (PERSISTENCE)
A state i of a Markov chain is persistent if

o
S =

n=0

Ifi is not persistent, then it is transient.

THEOREM 2.11

If the initial state is persistent, then with probability 1, the system returns infinitely often to
this state. If the initial state is transient, then with probability 1 the system returns only finitely
many times to this state.

State j can be reached (or is accessible) from state i if there is an [NV for which pi)) > 0.

DEFINITION 2.12 (IRREDUCIBLE AND STATIONARY MARKOV CHAINS)
A Markov chain is irreducible if every state can be reached from every other state:

(Vi,j € Q)AN > 0)pY) > o).

A Markov chain is stationary if for each state i, the probabilities p;(n) are constant for
n=20,1,....

The following theorem is a classic result for Markov chains, whose proof is adapted from
[KS60). First, we need some notation. A matrix P = (p; ;) is defined to be non-negative,
denoted P > 0, if every entry p; ; > 0, while P is positive, denoted P > 0, if > > 0 and
there exists at least one entry p; ; > 0. Finally, P is strictly positive if every entry p; j > 0.
Similarly, define P > ¢ for any real number €. Recall that a superscript ‘T" denotes the
transpose of a vector or matrix.

THEOREM 2.13
Let P = (p;;) be a strictly positive stochastic n x n matrix, and P > ¢ > 0. Fix
1 <j<mnandlet¥ = (p1j,... ,pn;)" be the jth column vector in matrix P, and let

§=(s1,...,8,)T = P-7. Consider the maximum and minimum components of vectors 7,
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S, given by
My = max ry,
1<i<n
mg = min r;
1<i<n v
M, = max s;,
1<i<n
m; = min s;.
1<i<n

Thenmgy < my < M, < Mg and (M, — m;) < (Mo — mg)(1 — 2¢).

PROOF  Suppose that 1 < ip,i; < n are such that p;; ; = mg and p;, ; = M. For
1 <i < n, define column vectors @, b by

a; = mo ifi = io,
! My otherwise

and
b _ [ Mo ifi=iy,
') mg otherwise.

Clearly b <TF o= (prj,.-- ,pn,J-)T < d, so by linearity, P b <§=P -7 < P-ad,
where inequality is defined componentwise. Moreover, the ¢th component in P - @ is
n

Al ijx Pij — Piio (Mo — myg), since

0
My :
P-a=P- - P- My — my ,
My :
0

where the term My — my appears in the ipth row, and hence equals My — p; ;. (My — myp).
since P is a stochastic matrix and so Z?:l pij = 1.Nowe < p;;forall 1 <i.j<mn, and
SO 1‘]] S A[() - F(;‘)\[() — ‘Hl‘()),

In a similar manner, the ith entry of P- bis equal to mg + p; ;, (Mo —mg) > mo +e(AMy —
my ). and hence

;‘11 —m, S J‘[{) — ((ﬂ]o — ‘IH()) - [7”() + ((A[() - "L())] = (A[() - 7”())(1 — 2()
|

For 1 < j < n,letmg(j) and M(j) represent the minimum and maximum, respectively,
of the jth column of matrix P, and let 1,4 (j) and M, (j) represent the minimum and
maximum, respectively, of the jth column of matrix P - (py j,... , px J)T. From the previous
argument, it follows that limy_,,, P = P* = (p; ;) exists, and that each entry in the jth
column of ’* has the same value. Denoting this common value of the jth column by p7, we
have that for 1 < < n,

pij=p; = [1141131( my(y) = thJI«IC Ay (5).
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Since mq(j) < mi(j) < --- < pj, the matrix P* must have strictly positive entries. Letting
di () = My(j) — me(j), it follows that d; (5) < (Mo — mo)(1 — 2¢)*, so that convergence is
exponentially fast. Now

P = li}n Pt = li}n pitl = (1i¥nP‘) .P=P*.-P;

hence it follows that (p},... ,p%) - P = (p},... ,p}). In other words, 1 is a left eigenvalue
of P, whose eigenvector is the row vector (p,... ,p).

COROLLARY 2.14
Let M = (Q,w, P) be a finite Markov chain, whose transition matrix P satisfies P > ¢ > 0.
Then lim; p;(t) = p;.

PROOF  p;(t) is the ith coordinate of P} - 7", so equals 3°}_, pgf}ﬂj. Recalling that

n _
> j=1 ™ =1, we have

n
* t *
pi(t) —p;l = |3 )7 - p)
j=1
n n
t *
= |>opm =Y )
j=1 1=1
n
t *
= Z ”j(Pg',])' - p;)
=1
n
< D mi (Mo —mo)(1 - 2€)!
j=1
< (Mo —mo)(1 — 2¢)t.
It follows that lim, (p;(t) — p}) = 0. |
We now claim that (pj,...,p}) is the unique left eigenvector of the transition matrix
P having eigenvalue 1. Indeed, suppose that § = (q1,... ,q,) is a probability distribution

satisfying g; = .1 gipij for1 < j <n.Theng-P=¢,¢-P>*=¢q,....¢-P' = ¢
etc. and so ¢ - lim; Pt = ¢- P* = § But it follows from Corollary 2.14 that 7 - P* =
n - P* = (p},...,p}) for any initial distributions 7,7, and so (q1,... ,¢») = (P},.-. . DP}).
and uniqueness follows.

DEFINITION 2.15

The period of a state i € @ of finite Markov chain M = (Q, w, P) is the greatest common
denominator of {t > 0 | p}; > 0}. A Markov chain is aperiodic if the period of each state
ieQisl.

For instance, if P is an n x n ‘anti-diagonal’ matrix having 1s along the diagonal from the
bottom left corner to the top right corner and 0Os elsewhere (i.e. p;; = 1if j = n +1 -4,
otherwise 0), then the period for every state is 2.

The following technical lemma is proved in the appendix to this chapter (Section 2.5).
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LEMMA 2.16 (POSITIVE TRANSITION MATRIX)
It Ml = (Q, 7, P) is a finite, aperiodic, irreducible Markov chain, then some power of P is
strictly positive.

Putting things together, we have the following.
THEOREM 2.17 (CONVERGENCE TO STATIONARY MARKOV CHAIN)
Given a finite, aperiodic, irreducible Markov chain M = (Q,w, P), where () consists of n
states, there exist stationary probabilities

lim p;(t) = p}.
t—oc

where the p7 form a unique solution to the conditions

e pi > 0.
. Z;;l p}‘”: 1,
o ]’; = Zi:l ]’;Pi.j-

The distribution (p}, ..., p;,) from Theorem 2.17 is also called the equilibrium distribution.
The following notion of reversible Markov chain plays an important role in Monte Carlo
algorithms. where equation (2.5) is called the detailed balance equation.

DEFINITION 2.18
Suppose that Al = (Q.w, P) is a Markov chain having stationary probabilities p}.... .p},.
Then M is reversible if tor alli, j € Q,

Pipi.j = PjPji (2.5)

Because of the exponentially fast convergence, it is simple to compute the stationary
probabilities for small Markov chains by repeatedly computing the powers P! of transition
matrix I”, until the desired numerical convergence has occurred. The common value p? of
the ¢th column is the stationary probability that the system is in state ¢. Moreover, the mean
recurrent time j¢;, 10 go from state i to state i, satisfies y; = 1/p7. In contrast, for the case of
substochastic matrix P, the iterated powers of I? converge to the zero matrix. For example,
for the stochastic matrix

0.8 01 0.1
P=1 033 033 034
0.25 0.5 0.25

after 17 iterations (i.e. P'7), the matrix

0.5953 0.2238 0.1808
0.5953 0.2238 0.1808
0.5953 0.2238 0.1808

is obtained, with stationary probabilities pj = 0.5953, p; = 0.2238, and pj = 0.1808. As
well, for the substochastic matrix

0 0.1 0.2
P = 0 025 075
025 07 0

7
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after 114 iterations (i.e. P!!*), the zero matrix was obtained (using 4-place decimal precision).

The existence of stationary probabilities is not just an interesting mathematical theorem, but
rather provides the justification for convergence of the Markov chain Monte Carlo algorithm,
where a sampling is made on an underlying aperiodic, irreducible Markov chain M =
(Q. ., P), whose limiting stationary probabilities are given by the Boltzmann distribution:
p; = QE‘ZL where E(i) is the energy of state ¢, T is the temperature, and Z is the partition
function, satisfying Z = 3., e50/T.

We terminate this section by an important approach due to A. Sinclair [Sin93] in bounding
the time for convergence to the stationary probabilities. This has applications to expected
runtime for Markov chain Monte Carlo algorithms. First, we define some new concepts.

Let M = (Q,w, P) be a finite Markov chain. The relative pointwise distance is defined as

lplj —pJI

*

At
(0 = max =

Fix a subset X' C @ and define capacity tobe Cx = }_,c y pi. Define the ergodic flow out
of Xtobe Fx = Ziex.jgzx pijpr-Since 0 < Fx < Cx < 1, the quotient &y = Fy /Cx.
may be considered to be the conditional flow out of X, provided the system is in X'. The
conductance ® = minc <12 ¢ x, where the minimum is take over all X' C Q.

THEOREM 2.19 (A. SINCLAIR[SIN93])
Let M = (Q. . P) be a finite reversible, irreducible, aperiodic Markov chain, for which all
left eigenvalues of P are non-negative. Then

)\t
Alt) < ——
min;eQ p;

where A, < 1 is the second largest eigenvalue. Moreover, A(t) < ;1“"—";%— andifop < 1/2
then A(t) > (1 — 2¢)".

2.1.4  Metropolis—Hastings Algorithm

The Monte Carlo algorithm, proposed by N. Metropolis e al. [MRRT 53], is a modification
of the greedy algorithm, where with small probability (given by the Boltzmann distribution),
occasionally unfavorable, non-greedy moves are allowed, with the intent to avoid becoming
trapped in local minima of the energy function. Later, Kirkpatrick et al. [KGV83] introduced
a temperature cooling schedule to implement simulated annealing, an idea borrowed from
metallurgy, where in order to produce small crystals, a metal is repeatedly quenched and
reheated, so that large, irregular crystals can be removed in favor of small, regular crystals.
This heuristic was given mathematical rigor only in 1984, when S. Geman and D. Geman
{GGB84] proved that for exponentially slow temperature schedules (7T;, ) simulated
annealing correctly computes the energy minimum.

Actually, this statement is not quite correct — all that can be shown is that with probability
tending to 1, simulated annealing correctly determines the energy minimum. Moreover, using
brute force, in exponential time, one could search the entire state space, so the analytical result
of Geman-Geman concerning exponentially slow temperature schedules is only of theoretical
interest. As given in the pseudocode below, the temperature is usually reduced by a factor of

- ]n n+1
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In(9-Thi)

something like 0.9, so that the number of temperature reductions is on the order of — 7

i.e. logarithmic in n, rather than exponential in 7.

Applications of Monte Carlo in computational biology include protein folding on lattice
models [SSK94b, SSK94a, VKBS95], optimality of the genetic code [SC97], DNA strand
separation in replication and transcription events [SMFB95], the double digest problem
| Wat95], etc.

Suppose that (2 is a finite set of states of a physical system and we have an energy function
E @ — R Detine a neighborhood system satisfying the following properties, where i € N
denotes that ¢ is a neighbor of j:

I.i & N;.

2. iEN; & jEN,.

3Ny =[Nl forall i, j € Q.

4. Fori.j € Q.if i # j, then thereexistm > 0andiy,... i, € @ such that

(l € i\rila‘il € ]Vigw e aim—l € ANnn’l‘m € A’rj)'

Let Ty; > T;, > 0 be given high and low temperatures. Pseudocode for Monte Carlo with
simulated annealing is given in Algorithm 2.1. Monte Carlo without annealing is obtained
removing lines 3,12,13 and usually optimizing with respect to temperature.

Algorithm 2.1 Monte Carlo with simulated annealing (practical version)

T = Ty
i = initial
while (T > T {
repeat M times {
choose random j € N;
if (E(j) < E(i)) then
i=j
else
o = random(0,1)
if (r < el"FU-EOUT then j=j
}
T =T 0.9

}

return i1 and E(1i)

As soon to be seen in our proof of its convergence, the Monte Carlo algorithm requires
that the move set be ergodic and balanced. Here, ergodic means that from any two distinct
states, there is a succession of moves from one to the other, while balanced means that the
detailed balance equation (2.5) holds for the underlying Markov chain. It suffices that the state
transition matrix be a symmetric matrix, all of whose entries are positive — i.e. for all states
i, j the probability of moving from ¢ to j is positive and equals the probability of moving from
jtot.

Following [Wat95], we prove the convergence of Monte Carlo without annealing. For
temperature 7', define the Markov chain Mt = (Q, 7, Pr), where if () consists of n states,
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then m = (1/n,...,1/n) is the uniform distribution on @, and Pr = (pr (i, j)) is defined by
11| if j € N; and E(j) < E(i).

—[E(j)- E(1))/T e . .
o , if j € N;and E(j) > E(i),
pr(i,j) = N o
ifj€ Nyandi # j,
1- Sypipr(ik) ifi=j.
We claim that My is a finite, aperiodic, irreducible Markov chain. The condition on the

neighborhood system implies that each state is reachable from every other state, so that Aly

is irreducible. Since pr(i,7) > 0 and P consists of non-negative entries, p(”( i) > 0 for all
t > 0, so the period of each i € Q) is 1; hence M is aperiodic. Thus by Theorem 2.17, My has
unique stationary probabilities (pT.(1), ... ,p%(n)), also called the equilibrium distribution.

[en)

. ~E()/T i . :
CLAIM p5-(i) = &——, where the partition function Z = 3", e” EU)/T.

PROOF Let br (i) denote the Boltzmann probability p}.(i) = e-Eg)/T, foreach i € Q. By

uniqueness of the stationary probabilities, it suffices to show that (br(1),... ,br(n)) is a left
eigenvector of Pr with eigenvalue 1, i.e. that br(j) = Y1, br(i)pr (i, j).

To this end, we first show that the Boltzmann probabilities satisfy the detailed balance
equation

br(0)pr(i,j) = br(j)pr(j,i)
forall 7, j € Q. This clearly holds if j € N;. Consider now the case that E(j) > E(i). Then

~BGW)/T o~ [E()=E@)/T

bT(i)pT(ia .7)

Z | Vi
- L E@-BG-EGOYT
|Ni|Z
= L EGyT
IN:i|Z
e‘E(J')/T 1
- Z N
B Z |Nj

bT(])pT(J»Z)

Finally, the case that E(i) > E(j) is proved analogously, by reversing the roles of 4, j. This
establishes detailed balance for the Boltzmann distribution.

Now we claim that the Boltzmann distribution is a left eigenvector of Pr with eigenvalue
1, in other words, (br(1),... ,br(n)) - Pr = (br(1),... ,br(n)), orforeach 1 < j < m,

n
=Y br(i)pr(i, 5).
i=1
By detailed balance,

ZbT(z pr(i,j) = me)pm,z) =br(j) Y_pr(,i) = br(j).
i=1
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It follows by the uniqueness condition of Theorem 2.17 that Ay converges to the stationary
Boltzmann distribution: i.e.

NNTIPT . e~ ET

lim py (4, j)m (@) = br(j) = W

We have thus proved the following theorem.

THEOREM 2.20 (METROPOLIS et al. [MRR*53])
The above Markov chain M has equilibrium distribution
e— BT
pri) = BT
2jeq B

fori € Q.

We have seen that for low temperature T > 0, if the energy has a unique global minimum at

. .. T EGgT . .

iy € (. then the Boltzmann probability ‘——;—— is large, so that with large probability, the

Monte Carlo algorithm will converge to state . What is the expected time until convergence?

This follows from the previously cited Theorem 2.19 due to A. Sinclair, plus a small

estimation for mean first passage time.

Annealing Schedule

Consider the version of simulated annealing given in Algorithm 2.2 with an exponentially
slow annealing schedule. Let () be a finite state space and consider the function £ : Q — R,
whose minimum we are interested in computing. Let ¢ > A be arbitrary, where A =
max;e i E(i)} — minje{E()}.

Algorithm 2.2 Simulated annealing — theoretical version

n=1; T = ¢; i = initial
repeat |{
choose random j € N;
if (E(j) < E(i) then
i=
else
& = random(0, 1)
if (0 < FEW-EOUT then j=j
n=n+1; T = ¢/lnn
}ountil T = 0

Let .\, denote the random variable whose value is the state (i.e. value of variable i in above
pseudocode) in the nth pass through the repeat loop. Similarly let T}, denote the temperature
in the nth pass through the repeat loop. With this notation, S. Geman and D. Geman
proved convergence in probability of simulated annealing with the above exponentially slow
annealing schedule.
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THEOREM 2.21 (S. GEMAN AND D. GEMAN [GG84])
Lete > AT, > ﬁ foralln > 1,and lim T, = 0. Then

n—ok

lim PriX, =i] = m(i)

n—oc

foralli € Q.

2.1.5 Markov Random Fields and Gibbs Sampler

Earlier, we mentioned that 56% of the genes of M. jannaschii are completely untamiliar to
biologists. How can completely new genes be detected in the genome? This will be explained
in Chapter 5, but involves a Markov model to determine the likely open reading frames
(ORF). In particular, a 4th-order Markov model was derived to predict coding regions of
M. jannaschii, using the software GENEMARK of [BM93].

A kth-order Markov chain describes the value of X; (at time t) in terms of a conditional
probability distribution depending on the values of X,_j,...,X;_;. One can imagine
random variables .X; ; for 1 < i, j < m placed on an m x m integer lattice, where the value of
X j depends on the values of neighboring X/ ;» (e.g. nearest neighbors, or neighbors within
distance r, etc.). The generalization of Markov chains to this scenario is called a Markov
random field (MRF) , defined as follows.

DEFINITION 2.22 (MARKOV RANDOM FIELD)

Let I be a finite set of N indices or sites. A neighborhood system® G is a collection of subsets
G; C I, foreachi € I ={1,... N}, such that

° i §Z Gi-

s icG; <= jedq,.

For indices i,) € I.1 is said to be a neighbor of j if i € (G;. Let Q denote a finite state

space, let X = (X; : i € I) denote a sequence of random variables. Let Q = Q' =
{(wi,... ;wn) | wi € @Q,1 < i < N} be the space of all possible configurations of the
family X, where (wy,... ,wn) Is abbreviated by w, and the event X1 = wy,... , Xy = wn

by X = w. The family X is a Markov random field (MRF) if

o PriX =w] >0, forallw e Q,
o PriX; =wi|Xj=w;.j#i =PrlX; =w]X; =wj,j € G, foreveryi € I and
w € Q (this last condition is the local Markov property ).

Note that if I is the binary relation defined by R(i, j) <= i € G, then above neighborhood
system requirement states simply that R is irreflexive and symmetric.

DEFINITION 2.23 (GIBBS DISTRIBUTION WRT I, G)

A set C' C [ of indices is called a clique if every two distinct elements of C' are neighbors
(thus C C G;U{i}, foreveryi € I). LetC denote the set of all cliques on I with neighborhood
system G. A Gibbs distribution relative to I, G is a probability distribution g;- on Q defined

by

4 Warning. This neighborhood system has nothing in common with that previously defined for MCMC.
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where the partition function Z satisfies
7= el
wEQ
The potential energy function U is defined by
Uw) =Y Ve(w).
Ccec

where V¢ (w) Is required to depend only on the coordinates rs of w belonging to the clique C'.
Denoting the restriction of & € Q to clique C C I by «|¢, this last condition translates into

ale = e = Ve la) = Ve(3).
Forw € Q,i € I and g € (Q, define w(i,q) € Q by

o[ ifi=],
W(“’)“{wj ifi #j.

If g is a Gibbs distribution wrt I, G, then by definition of conditional probability,

R i ., 91(w)
PriX;=wi|X;=w;,j#£i] = -
[ R > yeq 97(w(i.q))
forall i € I,w € Q. We will soon show that if gr(w) > 0 forall w € Q, then X is a Markov
random field, since the condition

PI‘[A\',' = u)i|‘\yj :wj,j 7—(3 1] = PT‘[‘\’,‘ = uJi|‘Yj = w'j,j € Gl]

is then satisfied.

In image processing [GG84], one can imagine the set / = {(i,7) | 1 < i,5 < m} (the set
of pixel locations in an m x m grid), the set () of colors, or gray-scale values, the set Q of all
possible images, 7) an initial distribution on the set of images, and g a stationary distribution
on the set of images, where the local energy value Ve («) of an image « involves an averaging
etfect on colors of pixels within the clique C, and the global energy value U («) is the sum of
all local contributions. In this example, for d > 0, we can define the neighborhood system G
consisting of

G = {(uv) €T (u—1)%+ (v - j)* <d}.

For d = 2, we have l-cliques such as {i}, 2-cliques such as {(7,7),(i + 1.7)} and
{Gi.0). (. j + 1)}, 3-cliques such as {(¢,7), (i + 1,7),(¢.j + 1)}, and 4-cliques such as
{(1./)(’ + 1~j)~ (Ln/ + 1)~(l + l,j + 1)}

A surprising fact is the relation between Markov random fields and the Gibbs distribution,
given in the following theorem. One direction of this theorem is not difficult to prove, yields
insight into the nature of this connection, and more importantly is necessary for an efficient
Gibbs sampler algorithm, and so will be given here. For a full discussion, proof and references,
see {KS80].

THEOREM 2.24
Let G be a neighborhood system on I. Then X is a Markov random field if and only if
Pr[X = w]| is a Gibbs distribution with respect to I, G.
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Let M = (I,Q, =, gr) be a stochastic process, where I is a finite set of indices or sites,
is a finite set of states, @ = Q! = {a | a maps I into Q}, 7 is an initial distribution on Q,
and gy is the Gibbs distribution on Q, defined by

e=Ua)/T
gr(a) = ——.

where the local energy function Vo : @ — R for C € C is such that if v, 3 € @, then
ale = Blc¢ = Ve(a) =Ve(3)and U : @ = Ris defined by U(a) = 3o Ve(a).
Ifie ITandw € Q, then
‘ e—Ulw.i)/T
gT(UJ,Z) = —Z(i)_—’

where U(w. i) : (@ x I) — Riis defined by U(w,i) = 3, Ve (w), the sum being taken

over all cliques C € C that contain the index i, and where Z(i) = 3__c,, e~ Ulwlig) /T

LEMMA 2.25
Prlw; = qilwj = q;,i # j] = Prlw; = qilw; = ¢;,j € Gi].

PROOF  We first compute Prlw; = gilw; = g¢j,i # j]. By the definition of conditional
probability,

Prlw; = qilw; = qj,i #j] = > Qﬁiﬂ(i q)]
q€ E

gr(w)

Z(IGQ gT(“)(i‘s Q))
e—U(u})/T/Z
ZqGQ e—l/(w(i.q))/T/Z

o= Ulw)/T

quQ e~ Ulwi.)/T"

Next we compute Pr(w; = g;|lw; = ¢;.j € G;]. To this end, define
Quw,i) ={a € Q1 a(j) =w(j) forall j € G; U {i}}

and

Q(w,i) = {a € Q| a(j) = w(j) forall j € G,}.

Qw,i) = Qw,i)U{ali,q) | a € Qw.i),g € Q} = {a(i.q) | a € Qw.i),q € Q}.
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By the definition of conditional probability.
Priw; =q;,j € GiU{i}]
Priwj=gq;.j € Gi]
Yoaedin Frial
ZOGQ(@J) % H(, ()_"('((‘)/'I'
Z“€Q(w,i) }Zn(-f’“"('(u)/’[‘
ZaéQ(w.i) (H(‘:ie(' e~ Vela)/T H(';,-g(' (,_\'(4((,)/,1;)

- V()T V()T
2 e <H(':i€(‘( AT [ e ige € ‘{(’)/1)

Privi=qilwj =q;.j €G] =

Note that i € C implies that C' € G; U {i}. For a € Q(w, 1), we have a(j) = w(y) for all
Jj€G;U{i}.Nowifi e (' CG;U{i}, then for each such a,

(,—\'(‘(a)/'l' — €~"(v(u,')/'1"
This allows us to factor out ¢ ~*<(@/T from the numerator. Recall that Q(w. i) = Q(w, i) U
{a(i.¢) | a € Qw.i).q € @Q}. This, together with the previous remark and the trivial
observation that V¢ (o) = Ve (a(i, g)) fori € C, allows us to conclude that Priw; = ¢;lw; =
qj.J € Gi] equals
Ve lw))T >~ Ve T
(H(':ig(" wlw)f ) (Zaegw.n H(':ie(' emtetal )
Ve lwlig))/T Ve )/ TY
(Z((EQ H(':ie(' ¢ Yolwli q))/l) (Z(\GQ(w.i) H<':i€(' ¢ ¢ ‘“)/l>

and thus

I3 Ccieo Yelw)/T
TS e Ve lwliqn/ T
20eq ! Yeiee Velwlia)/
o~ Utw)/T
Z(1)

Pl'[u.,‘,‘ = (],"LAJJ' = (Ijqj € Gl] =

We can now complete the proof of the claim. Now

IT e e/ I e et

CHeC g

= e UtwayT H e Yot/ T,
g

(,,vl"(w)/’l'

I}

For ¢ € (). by replacing w by w(i, ¢) in the previous equation, we have

e Ulwlig)/T . =Utwlig)d)/T H e~ Velwligh)/T,
g
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Now for ¢ ¢ C, by the local property in the definition of Vi, Vo (w(i, ¢)) = Ve (w). Thus

o e~ Ulw)/T
Priw; = gilwj = g;,1 # j] ZqEQ e Ulw(i.9)/T

e~ Ulwt)/T H(‘:ie(‘ e~ Vo(w)/T
Seqe VDN e Vel
o~ Ulwi)/T
CZG)
= Prlw; =qlw; =¢;.j € Gj].

It thus follows that if g is a Gibbs distribution, then X' is a Markov random field, yielding
a proof of the simpler direction in Theorem 2.24. Computationally, this means that

Uiyt
PT[w,- = Qile = qj,1 75]] = —Z(QT’
which is something exploited in the Gibbs sampler algorithm, and in a later application to
multiple sequence alignment.
In analogy to Theorem 2.21, S. Geman and D. Geman proved the convergence of a
Markov random field to the Gibbs distribution. In the following, gy (w) is as before, and
go(w) = Jim gr(w).

THEOREM 2.26 (S. GEMAN, D. GEMAN [GG84])

Let I be an index set of N elements, and let X = (X, : i € I) be a Markov random field on
1, and assume that the indices are visited in the orderng, ny, . ... Assume there exists M such
thatforallt > 1,1 C ny41,Ne42,. .. ,Ne+pr. Then for every initial configurationn) € Q and
configurationw € Q,

Jim Pr{X(t) = w|X(0) = 1] = gr(w).

Moreover, if T(t) is a decreasing sequence of temperatures satisfying
o limT(t)=0

t—oc
o T(t) > NA/lInt forallt > tg, for some temperature ty > 2,

then
lim PriX(t) =w
t—00

X(0) = 7] = go(w).

Given an arbitrary configuration w € Q, such as a digitized image with noise, Algorithm 2.3
(Gibbs sampler) converges to an image with noise removed.

In our previous notation, the expression in (4) is ‘;UWZ(:‘:))"WT . In practice, just as in Monte
Carlo with simulated annealing, the annealing schedule goes from an initial high temperature
to a final low temperature, where in each pass through the repeat loop, an assignment such as

T = 0.9 * Tis performed.
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Algorithm 2.3 Gibbs sampler

n=1; T = c;

repeat {
choose random site i€ 1
set w; =q with probability

e Z(‘:.’e(' V(‘(w‘(i,q))/T
Yreq ¢ Eciec Velelim/T

n=n+1; T = ¢/lnn
}until T =~ 0

2.1.6 Maximum Likelihood

After constructing a mathematical model for a biological process, one would like to determine
how well the model predicted observed data. This is the case when constructing phylogenetic
trees that relate various species and in constructing an appropriate Markov model to predict
coding regions of the genome.

Suppose that the data sequence O = o0g,...,or_; has been observed, and that A/ is
a stochastic model that supposedly generates O. The likelihood Lo(M) of the model with
respect to the observation sequence ( is defined by

Lo(M) = PriO|M].

When attempting to determine the best parameters for the model, a common statistical
approach is to determine the maximum likelihood.* In simple cases, the function L(A) can
be expressed as a closed formula in one (or several) parameter(s), and a local maximum can
be obtained by setting the derivative (partial derivatives) equal to 0. In the case of several
parameters, a saddlepoint rather than a local maximum might be obtained. Here is a simple
example to fix ideas.

Consider a coin tossing experiment with a possibly biased coin. The outcomes after n tosses
are

L., Tp,

where r; = 1if heads was obtained, otherwise x; = 0. The model considered is a single coin
tossing model with parameter p, indicating the bias of the coin: with probability p one tosses
heads. The likelihood

Lip) = p™ (1= p)1 700 ot (L= p) 170 = pE (1= p U,

so the derivative L'(p) is

() P2t = p) =0 = (3o = )] (1= p) =0 R,

 Waurning. There are examples where the likelihood function has no maximum.
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S0, setting the derivative equal to 0, we obtain

(Z zi) OSERES [Z(l - 1‘1‘)] (1 - p)lZa-z01-1

or

n n
(Zzi) (1-p) = pY (1-=),
:1%1 n = n
ZL‘"PZ%‘ = Im—PZfCu
i=1 i=1 i=1

n
E r; = pn,
i=1

n .
Zz’:] Ti

n

p:

Thus, the maximume-likelihood value of the parameter p is ZHL which is as expected. Since
the logarithmic function is monotonic increasing, L(A{) attains a maximum at the same values
aslog Lo (M ). Usually one determines the maximum of log Lo (M), which, even in the above
case, is substantially easier.

In more complicated situations, various optimization techniques can be applied, including
gradient ascent, Newton-Raphson, Monte Carlo with simulated annealing, expectation

maximization (EM) [DLR77, Wu83], etc.

2.2 Combinaterial Optimization

Suppose that Q is a finite set of states of a physical system, for which each state i €
has an associated energy F(i). We would like to determine the state for which energy is a
minimum, i.e. to minimize the function £ : ¢ — R. For instance, ¢} could be the set of
self-avoiding walks along a 3-dimensional face-centered cubic lattice, representing possible
backbone conformations of a protein, and for i € @, E(i) could represent the free energy
of conformation . Such combinatorial optimization problems involving exponentially large
state spaces can often be shown to be NP-hard. Monte Carlo, simulated annealing, genetic
algorithms, etc. are useful heuristic algorithms for attacking such problems, and will be
considered in this section.

2.2.]1 Lagrange Multipliers

Suppose we want to determine a local maximum or minimum of the function

flxy,...,zp)

subject to m < n additional restrictions ¢ (x,... ,z,) = 0, ..., ¢m(z1,... ,2,) = 0.
Extend the function f to F' by defining F(z1,... ,Zn,A1.... ,A;n) to be

f(-'l'l,“- ,.’L‘n)+/\1¢)1(.’L‘1,... 71711)+"’+Am¢mf(1'1’~~ ,IL‘n).



—‘:E\OOC\IO"JI-L‘"«JLJ—-

[89)

54 COMPUTATIONAL MOLECULAR BIOLOGY

Lagrange’s method® consists of determining stationary points of F; i.e. those ¢ =
{ay.... .ay) such that gTF.(”) =0forl <i<n,and (?——;;((1) = ¢ila) = Oforl <i < m.
Such points are either stationary, non-extremal (e.g. saddle points), or local maxima or local
minima of f that additionally satisfy the given constraints.

2.2.2  Gradient Descent

In order to minimize a differentiable energy function E, possibly of many variables, the
heuristic of gradient descent is to repeatedly set p = p + Ap, where the increment Ap is
chosen to be a constant times the gradient. Since the update is always in the direction of
greatest decrease in the energy function, this heuristic is an example of greedy algorithm.

For example, one can use gradient descent to determine the most likely bias p of a coin,
where ¢ many heads and n — i many tails were observed. In that case, corresponding to the
likelihood L(p) = p'(1-p)"~ % wedefineenergy E = —In L(p) = —iInp—(n—i)Iln(1—p).
Detine the increment Ap = -k%(E) = —k[i/p— (n —i)/(1 — p)], where k is a constant.
[f one programs this example with n = 20, ¢ = 10, initial value of p as 0.001, and constant
Ak = 0.00001, then after 5350 steps, convergence to the correct probability of p = (0.5 occurs.
However, for & = 0.0001, the algorithm diverges. A difficulty of this method, which we
shall see again applied to hidden Markov models is that it appears difficult to find suitable
parameters for correct convergence.

2.2.3  Heuristics Related to Simulated Annealing

Algorithm 2.4 Threshold Accepting (TA)

threshold § = ¢ > 0
i/ = initial
min = E(x)
repeat {
repeat {
choose random 3 € NV;
if (E(j) — E(@{) < 8) then
i=J
} until no change in energy
lower threshold 6 > 0
} until convergence
return i and E(i)

In [Due92] G. Dueck introduced several variants of simulated annealing, and cited
performance statistics of these algorithms against simulated annealing for the benchmark
of Grotschel’'s 442-city version of the Euclidean traveling salesman problem. Unlike
the situation for the Metropolis—Hastings algorithm (Markov chain Monte Carlo), whose

® Louis de Lagrange, French mathematician, 1736-1813.
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convergence follows because of the existence of stationary probabilities of an underlying
Markov chain, to our knowledge there is no theoretical underpinning for the heuristics
of [Due92]. Nevertheless, Dueck’s threshold accepting algorithm (TA, Algorithm 2.4) and
record-to-record Travel algorithm (RRT, Algorithm 2.5) could prove useful in applications.
Recall that simulated annealing makes a move from configuration ¢ to j with probability
min(1,e~2#/T), where AE = E(j) — E(i). In contrast, the threshold accepting algorithm
makes a move from configuration ¢ to j if AE < 6. The record-to-record travel (RRT)
algorithm is even more streamlined.

Algorithm 2.5 Record-To-Record Travel (RRT)

e = ¢ < 0
1 = initial
min = E(i)
repeat {
choose random j € N;
if (E(j) < €) then i=j
if (E(j) < min) then min = E(j)
} until convergence
return min

In [Gol93], N. Goldman applied the RRT algorithm to determine artificial genetic codes,
whose fault tolerance is greater than the natural genetic code. Using a genetic algorithm, in
a project in our group at Munich, A. Macri (unpublished) obtained substantially more fault-
tolerant artificial codes than those of Goldman.

2.2.4 Applications of Monte Carlo
Optimality of the Genetic Code

Glancing at the block-structured form of Table 1.3 in Chapter 1, it is clear that the genetic code
is fault-tolerant, in the sense that transcription errors in the third codon position frequently
do not influence the amino acid expressed (wobble). Moreover, errors in the other codon
positions often lead to amino acids having similar chemical properties. Several articles
([HH91, Gol93, Giu89] etc.) have studied the question of optimality of the genetic code with
respect to fault tolerance in 1-site transcription errors.

In restricting attention only to block-respecting codes (i.e. permutations of the 20 amino
acids while respecting the block structure of the code), Haig and Hurst [HH91] considered to
what extent the natural code has been optimized with respect to fault tolerance concerning (a)
polar requirement,’ (b) hydropathy, (c) molecular volume, and (d) isoelectric point.

A general genetic code c is simply an onto map® ¢ : {4,C,G, U} — {1,...,21} from
the 64 codons onto the 20 amino acids plus the stop signal. We do not include the 21st amino

7 Polar requirement, as measured by C. Woese et al. [WDD166), is taken to be synonymous with
hydrophobicity.
8 An onto map, or surjection, is a map that, to every element of the range, maps some element of the domain.
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acid selenocysteine. A code is block-structured if

e c(ryz) = c(x'y’'z") holds for any two codons zyz, x'y’2' coding the same amino
acid in the natural code, and
e c(UAA) = c(UAG) = ¢(UGA) = Stop.

In other words, a code is block-structured if it simply permutes the 20 amino acids, while
retaining the block form of the table. Finally, a shuffled-codon code allows changes in the
block form of the table, while retaining the assumption that 3 amino acids have 6 codons, 4
amino acids have 4 codons, I amino acid has 3 codons, the stop signal has 3 codons, 9 amino
acids have 2 codons, and 2 have | codon. There are

20! = 2432902008176640000 > 2.43 x 10'?

block-respecting codes, and

64!

ey ayey 07

many shuffled codon codes (there are 2 amino acids having only one codon (Met, Trp),
and in this computation, the stop signal is counted as having 3 codons). In comparison,
the number of general codes can be calculated as follows. There are 21! - S(64,21) many
general codes, where S(n,m) is a Stirling number of the second kind. Since S(64,21) =
2.95572845518811 x 10%4, it follows that there are more than 1.51 x 10%% general codes
(thanks to R. Matthes for the computation).

Following [HH91], define the polar requirement mean square difference M S(c) of code ¢
to be

(2.7) + (2.8) + (2.9)
> |

C , (2.6)

ry:€{A,C,GT}3

where C is the number of 1-site mutations from a non-stop codon to a non-stop codon,” and

> D(c(zyz), e(z'yz)), (2.7)
'e{A,C,G, T}—{z}

> D(e(xy2), c(zy'z)), (2.8)
v €{AC,G.TY—{y}

> D(c(zyz), c(zyz")), 2.9)

2 €{A,C.G.T}~{z}

the sums being taken over non-stop codons. If X, Y denote amino acids, then D(X,Y) =
[W(X) — W(Y))?, where W(X), W(Y) respectively denote the polar requirement values
from Table 1.2 in Chapter 1, as determined by Woese et al. [WDD* 66].

Similarly, define fault tolerance in the first position M S;(c) of code ¢ by considering only
term (2.7) in (2.6), and by replacing the denominator C' by C, the number of mutations of

 Without the restriction concerning non-stop codons, C' would be 64 - 3 - 3, since there are 64 codons, and
for cach codon 3 sites, and for a fixed codon and site 3 remaining nucleotides for the mutation choice.
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the first position from a non-stop codon to a non-stop codon. Similarly, define AL S, and AL S
for the second and third positions. Thus M S(c) is a measure of the fault tolerance of genetic
code ¢, while M S (c), M Sa(c), M Ss(c) measure the fault tolerance of ¢ with respect to 1-site
mutations in the first, second, and third positions, respectively. For clarity, in Algorithm 2.6,
we list a function, written in C, that computes M S(code).

Algorithm 2.6 C program to compute MS(code)

float MS(gcode code) {
int i, j, k, m;
int num = 12*64;
/* potentially this many swaps between codon (no stop) */
float sum = 0.0;

for (i = 0; 1 < 4; 1i++)
for (3 = 0; 3 < 4; J++)
for(k = 0; k < 4; k++) {
if (code(i][j][k] != STOP)
for (m = 0; m < 4; m++) {
if ( (1 !'=m) && (code(m](3jl[k] != STOP) )
sum += D[code[i][j][k]][code[m][]][k]];
else
num--; /* subtract 1 from number of swaps */
if (  (J !'=m) && (codel[il[m][k] != STOP) )
sum += D[code[i]l[j][k]][code[i][m](k]];
else
num--;
if (  (k!=m) && (code[i]l[j][m] != STOP) )
sum += D[code[i][]j]l[k]][code[i]l[j][m]];
else
num--~;
}
else
num -= 12; /* disallow swap of stop codon */
}
return sum/num;

By measuring the values MS,, MS;, MS3;, MS for the mean square change in
an attribute’s value (e.g. polar requirement, molecular volume, etc.) for all single-base
substitutions in first, second, third, and resp. for all three codon positions for the natural
and random block-respecting codes, Haig—Hurst concluded that ‘single-base substitutions are
strongly conservative with respect to changes in polar requirement and hydropathy in the first
and third codon positions, but much less so in the second codon position.” Moreover, the polar
requirement mean square difference M .S for the natural code was determined to be 5.194,
while only 2 out of 10000 random codes were found to be more conservative with respect to
polar requirement (A{ S values of 5.167 and 5.189). Polar requirement A S, M S,, and M S;
values for the natural code were determined to be 4.88, 10.56, and 0.14, which reflects the



58 COMPUTATIONAL MOLECULAR BIOLOGY

Table 2.1 Freeland—Hurst genetic code.

U C A G
Ile Ala Gln His (U
Ille Ala GIn His | C
U | Cys Ala Stop Stop | A
Cys Ala Stop Gly | G
Cys Leu Thr Ser | U
Cys Leu Thr Ser | C
C | Cys Leu Phe Ser | A
Cys Leu Phe Ser |G
Trp Pro Asp Ala | U
Tp Pro Asp Ala | C
A| Tp Pro Glu Ser | A
Val  Pro Glu Ser | G
Tyr Met Asn  Arg | U
Tyr Met Asn  Arg | C
G| Tyr Met Lys Arg | A
Tyr Met Lys Arg | G

fact that error tolerance is highest for transcription errors in the third codon position (i.e. on
average there is greatest conservation of polar requirement for single-base substitutions in the
second codon position).

In a recent paper, Freeland and Hurst [FH98] sharpened the results of Haig—Hurst by
studying the polar requirement mean square difference where transversions are less likely
to occur than transitions."” In 1 million randomly generated codes, they found only one code
more fault tolerant than the natural code (code displayed in Table 2.1).

In contrast to the block-respecting codes of [HH91, FH98], Goldman [Gol93] considered
the more general shuffled codon codes, which maintain the same number of codons per amino
acid as in the natural code, but do not require the block structure of the natural code table.
Goldman computed the mean square difference M S over all single-base substitutions (for
amino acid, non-stop codons) for artificial codes obtained by a heuristic for optimization
called the record-to-record travel algorithm [Due92]. The most conservative code found by in
|Gol193] had polar requirement value A S = 4.005, and for this code more uniformly spread
M S|, MS,, and M Ss values of 3.06, 3.67, and 5.28.

In [Giu89], Di Giulio estimated that the natural code has achieved 68% minimization of
polarity distance, by comparing the natural code with random block-respecting codes. When
considering single base changes in the codons, let IV, ; be the number of times the i¢th amino
acid changes into the jth amino acid, and X; be the polarity index [WDD™"66] of the ith

10 A transversion is a mutation from a purine to a pyrimidine, or vice versa, while a transition is a mutation
from a purine to a purine, or from a pyrimidine to a pyrimidine. Transitions are more frequent than
transversions.
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Table 2.2 Di Giulio’s genetic code.

U C A G
4.8 Ty g 13 8]
4.8 Is Ig r13 C
Ul xz; xs Stop Stop | A
z1 x5 Stop x4 | G
1 54 x9 ri5 | U
T 5.4 I9 I1s5 C
C T 5.4 10 I15 A
T 54 x10 15 G
z2 xe¢ 12,5 s 8]
Z?2 ool 12.5 Ts C
Al xo Te 13.0 Tis A
T3 Te 13.0 T1s G
T4 T7 Tn 79 | U
x4 T7 In 79 | C
G Ia ry T2 7.9 A
T4 X7 T12 79 | G

amino acid. DiGiulio’s percent minimization is defined by

A[Smean - A'[Scode

) 2.10
]wsmean - AIS]ow ( )

where o
Zi,j(‘xi ~ X;)*Ni

Zi, J Nij 7
M Sinean is the average M S(c) value, obtained by averaging over many random block-
respecting codes ¢, and M S, is an approximation of the lowest possible M S value obtained
using the method of Lagrange multipliers to solve a constrained minimization problem.
Specifically, define the function

MS(c) =

G(.’L‘l,... ,115,)\) = A[C(C) +)\(I)

where ¢ is the code in Table 2.2, and & = Z:; z; — 104.8. DiGiulio selects the largest
and smallest polar requirement values, along with median values, and places these values on
the diagonal, since (with a small exception) no 1-site mutation from a diagonal element can
mutate diagonal elements to other diagonal elements.!! This produces diagonal values of 13.0,
12.5, The real-valued variables z1, . .. , x5 represent polar requirement values (not required
to lie in Table 1.2 in Chapter 1), which, together with the previously mentioned values add

11 Without setting certain polar requirement values in the code, the minimum M S is trivially obtained by
assigning each amino acid the polar requirement (hydrophobicity) value 148.4/20.
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up to 148.4, the total polar requirement in Table 1.2. Following Lagrange’s method, set the
partial derivatives of G equal to 0

oG oG oG

— =0, ..., =0, —=0 2.11

oz, B71 o S
and then solve forx, ..., x5, A, to obtain a local extremum for the constrained optimization

problem. Taking M Sy, to be the mean square difference for the resulting solution to
system (2.11), and applying (2.10), DiGiulio estimates that the natural genetic code has been
optimized 68%.

2.2.5 Genetic Algorithms

Drawing on an analogy with sexual evolution (crossover and pointwise mutation), John
Holland introduced the notion of genetic algorithm (GA), subsequently generalized in
evolutionary programs. Our interest in GAs is in that of a combinatorial optimization tool
for exploration of large search spaces. The general form is given in Algorithm 2.7.

Algorithm 2.7 Genetic algorithm

t =0
initialize population P(t)
compute F(t)
best = argmax { F(z) | = € P(t) }
repeat {
t++
amplify fit individuals
crossover
pointwise mutation
compute F(t) for new population P{(t)
max = argmax { F(z) | = € P() }
if ( f(max) > f(best) ) best = max

}

until convergence // cook until done

We now give a few further details to refine the previous pseudocode. The population size m
1s constant throughout the algorithm, where at the beginning of the program, the population is
initialized to consist of random bit strings of length n. Suppose that at time ¢, the population
P(t) consists of bit strings (also called chromosomes) =, ... ,r,. Each bit string z; has
an associated fitness f(x;), where our goal is to determine where f attains its maximum.
The fitness F'(t) of the entire population is just the sum of the individual fitness values; i.e.
F(t) = Y, f(«;). For instance, in an application to protein folding on lattice models
given in a later chapter, f(x;) will be the number of hydrophobic-hydrophobic contacts in a
conformation on a 2-dimensional lattice, corresponding to a possible conformation of a given
amino acid sequence.

In the amplification step, the intent is to produce a temporary population P’(t) where the
expected number of occurrences of «; in P'(¢) is mp;, and p; is the relative fitness, given by
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Algorithm 2.8 Roulette wheel

@ =0
for i =1 ton
9% = Qi-1tpi
for i =1 to m {
z = random real in (0,1)
find least ip such that z < gy
output =z,

e ad

pi = f}fft‘)) . To achieve this, use cumulative probabilities and the roulerte wheel technique, as
given in Algorithm 2.8.

Suppose the individuals z; of the population P’(t) are now given in array A. We shuffle the
contents of A by using a temporary array B, and then recopy B into A. This is described in
Algorithm 2.9.

We can now pair A[0] with A[1], and A[2] with A[3], etc. and perform crossover.
Crossover is performed for a given pair consisting of mother chromosome a,,... ,a, and
father chromosome b;,... ,b,, by randomly choosing a crossover position 1 < i < n,
and forming the new pair consistingof a;, ... ,a;,biyy,... ,bpand by, ... bi,aip1. ... ,a,.
Pointwise mutation is performed by changing each bit of each chromosome (toggling the bit in
the case of bit strings) with some small probability. This completes our description of genetic
algorithms. For more, consult the very readable references [Mic96, Mit98].

2.3 Entropy and Applications to Molecular Biology

In the latter part of the 19th century, Boltzmann introduced the concept of entropy as a measure
of disorder in a closed container containing an ideal gas. In this section, following E.T. Jaynes
[Jay57], we will show how Shannon’s information theoretic notion of entropy can be used to
derive Boltzmann’s notion of thermodynamic entropy.

Algorithm 2.9 Shuffle

3=0; k=m;
for 1 = 1 to m {
x = random integer in { 0,....k—1 }
B[j]l = Alx]; j=j+1;
swap( Alk-11, A(x] );
k=k-1;
h

for i = 1 tom A[i] = B[i];
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2.3.1  Information Theoretic Entropy

Let ¥ be an alphabet of size N, and consider a word w = w - - - w, consisting of n letters
from X, for instance ¥ = {4,C,G,T}. What is the information content of w? Suppose
that we have the partial word w, - - - w; and have just ascertained w,,;. How much extra
information does w4, give us? Shannon’s information theoretic concept of entropy was
developed to answer these questions.

Suppose that we receive a symbol from an alphabet of size IV, where letters are sent with
equiprobability (i.e. uniform distribution). If a symbol is transmitted as a binary signal, then
we must wait until all log, /V bits of the symbol are sent before we know with certainty which
symbol has been transmitted. Thus the information or information theoretic entropy contained
in a symbol from an alphabet of size [V is log, N, under the uniform probability distribution.
Assume that p; = Pr[4,], ..., pn~ = Pr[Ay] are the probabilities of outputting characters
A; in a message, where Zfil pi = 1. Suppose that 1, the length of a random message A
(or length of nucleotide sequence) is large, and let 2; = np; be the expected number of
occurrences of 4;. Then the message M belongs with high probability to a set of size given
by the multinomial coefficients

N!
N, = 1 1
ntl---ny!
representing the number of ways of partitioning N into a collection of sets of sizes
ny,...,ny. The average information should then equal
log, NV,
I = 082 Tn .
n

Stirling’s formula from Theorem 2.1 yields that

V2mnnte ™™

N ~ - | k]
" V2rgntem -\ 2anynN e
so that
InN, ~ nlnn—npInnp) —--- —npy In(npy)
= nlun—(p+--+npy)lnn —npyInp; — ... —npy Inpy

N
= —an,— In p;.
i=1

Since In and log, are related by a constant, it follows that

N
log, N,, ~ —n Zp,- log, pi,

=1

thus motivating the definition of entropy H(py, ... ,p,) in Shannon’s formula:
N
log, N,
H(px\...,pn)=1=%—=—§:piloggpi< (2.12)
i=1

Shannon’s entropy, sometimes called information, is usually defined using logarithms to the
base 2. However in various settings, we may consider natural logarithms or logarithms to
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another base - this modifies the value only by a mulitiplicative constant. By convention
0 - log,(0) = 0, so for any probability distribution py, ... ,p, which concentrates on ¢ in
the sense that p; = 1if i = ig, otherwise p; = 0, we have that H(p;,... ,p,) = 0.

2.3.2  Shannon Implies Boltzmann

In this section, following [Jay57], we show how Shannon’s entropy function gives rise to
the Boltzmann probability distribution, and can be used to derive Boltzmann’s law. Thus
information theoretic entropy appears to be a more primitive notion than that of energy and
gas kinetics.

In [Khi57] Khinchin proved that information theoretic entropy

H(Pl«-u,pn)=“217illlpi (2.13)
i=1

achieves a unique maximum for the uniform distribution;'? i.e. p; = 1 for 1 <i < n. This is
intuitively clear, since under equiprobability of sending a character in an alphabet T of size n,
the information (or entropy) of a character is log, n, i.e. until alf binary bits in the transmitted
message are sent, we do not know the proper character transmitted.

For small values of n, Khinchin’s result is easy to derive using (partial) differentiation.
Suppose 0 < p.q < 1 satisfy p + ¢ = 1. Using (2.13), define the function F(p) =
H(p,1-p)=—[{plnp+ (1 -p) In(l - p)]. Then

dF

e =—[1+Inp-1-In(1-p)]=-[lnp-—In(l - p)]

Thus fj,—;‘ =0ifflnp =In(1 —p)iffp=1—-p,sothatp =} =¢q.
The case for probabilities p, ¢, 7 summing to 1 is left as an exercise. The general case of
Khinchin’s result can be proved using the method of Lagrange multipliers. Define

n
H(pi,...,pn) + A (Zpi - 1)
i=1
n n
—Zpilnpi +A (Zpi - 1) .
i=1 i=1

Setting the partial derivatives to 0, we obtain

Ii
@:—-(l+lnpi)+/\:0,

pi

h’(plw cee apnv)\)

[l

so thatp; = e*~! for 1 < i < n. Additionally, we have the requirement that 3", p; = 1 and
so 1 = ne*~!; hence A — 1 = In(1/n). From this expression, we have that p; = ¢"(1/") =
1/n for 1 < i < n, thus proving that the uniform distribution yields a stationary point for

12 Laplace’s principle of insufficient reason states that if we have no knowledge to the contrary, then we
should assume that events are equiprobable. Thus Khinchin’s result states that Laplace’s principle is
justified by maximal entropy.
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the entropy function. Additional scrutiny shows that it is the unique maximum of the entropy
function.

In [Jay57], Jaynes considered computing the maximum of the entropy function, under the
additional requirement that the average energy

(E(z)) =) _ piEi(x)
i=1

is known. Surprisingly, this approach leads immediately to Boltzmann's probability
distribution. in place of the uniform distribution in Khinchin’s result. Let us start with some
definitions.
Assume that variable & can take on values in the discrete space = {z.,... ,x,}, where
pi = Priz = z;].

Suppose the probabilities p; are not known, but only the expected values
(E(x)) = >_piE(x) (2.14)
i=1

of a function £. From this point on, let us fix x and write E; in place of E(x;). As the p; are
probabilities summing to 1,

ip,' =1 (2.15)
=1

The Shannon entropy function H measures the entropy or uncertainty of the probability
distribution py, ... . p,. and is defined by

n
H(py,... .pn) = —Zp,- In p;. (2.16)
i=1

In the absence of other criteria, the most likely probability distribution satisfying equations
(2.14) and (2.15) is that having maximum entropy (2.16). To maximize (2.16) subject to the
constraints (2.14) and (2.15), we use the method of Lagrange multipliers. Leta = ay.... .«a,
be a local maximum of H, and «, /3 be such that

OH J " 0 -
) = a— nE; — 84— _ 2.
an, (a) “01)j (Z pi E; (E)) (a) + ‘j(')pj (z Di l) (a) (2.17)

i=1 =1

for j = 1.....n. Now (E) and E,,....E, are constant with respect to the variables

I

E;.

a n

o (Zp,ﬂi - <E>)
0 n
ap; <ZP1’— 1) = L
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hence
OH
— —aE: . 2.18
6I)j ar; + <] ( )
From equation (2.16),
OH
— = —(1+1np;); (2.19)

hence from equations (2.18) and (2.19), we have
lnpj = —an - (6 + 1),

so that
P] — e_an—<6+1).
Write the previous equation as

pj =e M HE; (2.20)

Substitute (2.20) into (2.14) and (2.15) to solve for A, u. Thus from (2.14),

n n
1= ZP:‘ = Ze_k‘“E‘,
i=1

i=1

$O
n
et =Y b (2.21)
i=1
From (2.15),
n Zy'l-—l e—uEiEi Z"_ e—;tEgEl,
(E) =3 piE, = &= S R
; l e Yz e B
Let
n
Z(p) = ek (2.22)
i=1
be the partition function. Differentiation of Z(u) with respect to p shows that
(E) = _9 InZ(p) (2.23)
o , 2

and by taking logarithms of (2.21),

A=1InZ(p). (2.24)
From (2.20)—(2.22), we have the maximal entropy probability distribution
e HE;
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By (2.20).(2.15), and (2.14) the distribution has entropy
n
Huyax = - Z Di In Di
i=1
n
= - Zzn(~/\ - pnE;)
i=1

It n
= /\Zpi + /LZP:’E:'
i=1 i=1
= A+ u(E).
From the kinetic theory of gases,
e—Ei/kT

p_]= n — k. kT
Die € o/

1=

(2.25)

where T' is the absolute temperature in degrees Kelvin and K is Boltzmann’s constant. As
outlined in [Jay57], this approach, as applied to statistical mechanics, where averages of the
energy levels E; of a system are known, yields A} = ﬁ so that

G = U-TS=-kThhz, (2.26)
(2.27)
and, as in equation (2.23),
oG 1 «
= —_—_—_— = - — 7. . b}
S 3T T iZ::lp, Inp;. (2.28)

Here, T is absolute temperature, S is thermodynamic entropy, U is internal energy (in a
molecule, this is enthalpy, i.e. energy from ionic, hydrogen and covalent bonds, etc.). and G
is (Gibbs) free energy.

2.3.3  Simple Statistical Genomic Analysis

We have just seen Khinchin’s result that the maximum entropy is achieved with the uniform
distribution; i.e. maximum entropy is

max . 1 1
H"™ = — E —log, — =log, n,
“~n n

or approximately the number of bits in the binary representation of n. In the case of
nucleotides A, C, G, T, the maximum entropy is then — log 1 = 2.

When analyzing a nucleotide sequence, one can measure the frequencies p(A), p(C). p(G), p(T)
of A4, C,G. T, and define the nucleotide entropy

H, = —p(A)log p(A) = p(C) log p(C) = p(G) log p(G) — p(T) log p(T).
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Following [Gat72], the divergence D; from equiprobability is defined as
D, = H™ — H,.
A computation using TIGR’s sequence data for the M. jannaschii genome yields frequencies
p(G) =0.157, p(A) =0.344, p(T)=0.343, p(C) = 0.155

and so the mononucleotide entropy H; is 1.89653 bits.!* Since maximal entropy H"** is 2,
it follows that D; is 0.103473. A similar computation yields the frequencies

p(G) =0.190, p(4)=0.310, p(T)=0.308, p(C)=0.192

for Haemophilus influenzae (6824 main), with corresponding mononucleotide entropy H; of
1.9591 bits, and divergence D; = 2 — 1.9591 = 0.0409 bits.

One can compute the dinucleotide entropy, i.e. with respect to all subwords of length 2 (and
more generally for any fixed length). Define

Hy = —p(AA)logp(AA4)—p(AC) log p(AC)—p(AG) log p(AG) —p(AT) log p(AT)—- - - .

A computation using TIGR’s genomic data yields dinucleotide frequency data for M.
Jannaschii given in the following table:

G A T C
0.034 0.057 0.039 0.027
0.060 0.134 0.111 0.039

0.055 0.098 0.134 0.056
0.008 0.055 0.059 0.033

>0

A computation then gives Hy = 3.760 bits for M. jannaschii. The following table consists
of dinucleotide frequencies for M. jannaschii assuming the independence of occurrence of
different nucleotides, i.e. p(AA4) = p(A)p(4). p(AC) = p(A)p(C). etc:

G A T C
0.024649 0.054008 0.053851 0.024335
0.054008 0.118336 0.117992  0.05332
0.053851 0.117992 0.117649 0.053165
0.024335 0.05332  0.053165 0.024025

a-=s3>0

A computation then yields Hi"d = 3.787 bits, so that Dy = Hi" — H, = 3.787 — 3.760 =
0.027 bits.

Sometimes a genomic entropy plot is made, where the nucleotide or dinucleotide entropy
of the contents of a window of the genome is plotted as a function of the starting position of
the window. See Figure 2.1 for an example.

When presented with raw data consisting of millions of nucleotides, an immediate
consideration is to perform a frequency count of nucleotides, dinucleotides, etc. Moreover,
in coding regions the G,C content may be higher than A, T content, perhaps because of the

13 Data from M. jannaschii 1070 main, 1069 ECL, 1063 ECS. The computed frequencies of Watson-Crick
base pairs are not equal because of uncertain sequencing data such as NV, R, Y, etc.
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Figure 2.1 Dinucleotide entropy plot of M. jannaschii genome fragment.

additional stability provided by three rather than two hydrogen bonds between G and C.
For instance, Haemophilus influenza has 1.83 Mb with G + C content of 38%; Mycoplasma
genitalia has 580 kb with G + C content of 32%; Mycoplasma genitalia has 816 kb with
G + C content of 40%; Methanococcus jannaschi has 1.665 Mb with G + C content of 31%.
Following Karlin [Kar97a], define the following odds ratio measures for dinucleotides and
trinucleotides, where x, y, z are nucleotide letters A,C, G, T:

p - f,r,y
oy fefy’
. fl.y,zfy
dx, = T s
Y fx,yfy.r
fz.y.:fxfyfz

Yewy: = o 7
fewyfez
For a random nucleotide sequence s of length n, Karlin observed that the relative abundance
Pr.y 15 approximately \/Lﬁ where ¢ is a constant, and using simulations has shown that

for n = 10°, p,, lies between 0.92 and 1.08. From Karlin’s observations reported in
[Kar97a], the dinucleotide TA has almost universally low relative abundance p 4, while
the relative abundance of GC is persistently high in gamma enterobacteria, etc. Exactly what
such measures indicate is largely unknown, though it is speculated that low TA dinucleotide
relative abundance is because of the low thermodynamic stability of TA hydrogen bonds,
and the fact that TA is part of certain regulatory sequences such as the TATA box, and the
terminator signal AATAAA in higher eukaryotes. Relative abundances for M. jannaschii, as
computed from TIGR’s genomic data, are given in Table 2.3.
Following [Kar97a}, for nucleotide sequencesa = a; ---a, and b = b, - - - b,,, define

Fab = Y S lpis(@) - pisb)]
i€{A.C.G,T}jE{A.C.G.T}
Thus 6*(a, b) measures the average dinucleotide relative abundance between two nucleotide
sequences. Noting that species appear to have an approximately constant genomic signature
when measured over 50 kbp (50 kilobasepairs) or larger, Karlin observes that §* could be used
to construct phylogeny trees for very unrelated species.
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Table 2.3 Relative abundance data for M. jannaschii.

G A T C
1.389 1.051 0.714 1.123
1.103 1.131 0944 0.728
1.027 0.830 1.137 1.047
0.320 1.033 1.109 1.375

a—=>»Q

2.3.4 Genomic Segmentation Algorithm

In [RRBGO98], a segmentation algorithm is introduced, which computes a partition of an
input DNA sample, yielding segments or regions of the genome where the purine/pyrimidine
entropy is homogeneous. This is done by iteratively computing segmentation points for which
a maximum, statistically significant Jensen-Shannon divergence from the DNA background
entropy is obtained. In this section, we explain the notion of divergence, and present
pseudocode for the algorithm developed in [RRBGO98].

Specifically, given a DNA sequence of length n, consider the sequence W' = w; ---w,, €
{R,Y}* of corresponding purines (R) and pyrimidines (Y).'* The sequence " can be broken
into two segments U, V, where U = w; -+ -wp, and V = wyp 41 -+ - wp forsome 1 <m < n.
Suppose that W is a sequence of length n, consisting of r purines. Define the entropy
H(W) = —Tlog, (1) — %" log,y (™), and similarly for U, V.

n n

The Jensen—Shannon divergence JS»(U, V') is defined by

- m

JSs(U. V) = H(W) - %H(U) ELRLLY 71t

n

where W is the concatenation of I/ and V', written W = UV, and m = U], n — m = |17].
To gain intuition for this notion, let us consider several simple examples. Clearly the
entropy of any sequence composed only of purines is 0. Thus if W = RR...R, then
JS» (U, V) = 0 for all segmentations of the form W = UV Consider now the example
of a sequence W = RYRYRY ... RY of alternating purines and pyrimidines of even
length n. Clearly H(W) = 2. For any segmentation of the form W~ = UV, where U, 1~
are both of even length, H(U) = 2 = H(V), and hence JS»(U,V) = 0. Suppose
now that U is a sequence of purines of length m, and V" a sequence of pyrimidines of
length k, and that W = UV. Then H(U) = 0 = H(V) and JS,(U,V") = HW) =
=i logy (%) — ﬁlogz(m"ﬁ) > 0. Moreover any other segmentation of 1™ into
different ', V"' will have smaller Jensen—Shannon divergence. Consult Figure 2.2 for a graph
of divergence as a function of segmentation point for a fragment of the M. jannaschii genome.
The statistical significance of the segmentation W = UV, where |W| = n, |U| = m,
|[V'| = n — m, is defined as the probability that a random sequence, having the same base
composition and length, when split into a first segment of length m and a second segment of
length n—mn, has Jensen—-Shannon divergence at most that of J.S» (U, V). For short sequences,
this can be computed exactly using the hypergeometric distribution, where h(n, r;m, k) is the
probability of drawing k red balls in a sample of size ., given that there are r red balls in

1 Iy [RRBGOYS] it is reported that better results were obtained for the alphabet R.Y (purine, pyrimidine).
than for S (strong, i.e. cytosine, guanine) and W (weak, i.e. adenine, thymine).
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Figure 2.2 Jensen-Shannon divergence of 717112 base fragment of M. junnaschii genome as a
function of segmentation point (x-axis in units of 100 bases).

a collection of n balls. For longer sequences, a more easily calculable approximation to the
hypergecometric distribution can be used |[BGRRO96]. Algorithm 2.10 computes, given the
segmentation 117 = {717, the statistical significance s, where 0 < s < 1.

It 117 is broken into contiguous segments W = Uy --- U7, with |U;

={,and ) ¢, =n,

then
m {I
JS,, Uy, ..., U, = H(W) - —H((U;
(U Uy) ()gn ()
m (l . .
= Y CHW) ~ H(U)
=1

represents the weighted sum of histogram entropy divergences of the domains U, ... ,U,,
from the average, a measure of the number and compositional bias of the domains in the
segmentation. Finally define JS}, (s) to be the largest value JS,,(U,,....Up) over all
possible segmentations of 117 into 1 contiguous segments U, - - - U, provided the statistical
significance of Uy ---U,, is at least s. Note that JS;,(s) monotonically increases as s
decreases, since for s’ < s, more partitions are considered. Let JS*(s) be the maximum
of JS,(s)overall 2 < m < n.

In {[BGRROY6|. a heuristic algorithm for approximating JS*(s) is given. Namely
iteratively split a segment R into subsegments S, T' that maximize .J.S2(S, T'), provided that
the statistical significance of the subsegmentation S, T is at least s. (This avoids the trivial
segmentation where each segment consists of a single nucleotide.) To formalize this, let
statSig (i, j,m) represent the statistical significance, as computed by Algorithm 2.10
withU = w; -+ wy, V = wipgr - wj, [Ul = m =i+ 1, |V]| = j — m. Note that the main
loop in this algorithm is of the form for k = 0 to m,except that we rule out non-positive
arguments of the logarithm function. This leads to the form for k = max(0,7 + m —n)
to min(m.r). Now we have Algorithm 2.11 for the heuristic to approximate JS*(s).

In [RRBGO98], it is claimed without proof that the computation of JS5*(s) is an NP-
complete problem. It would be interesting to provide a proof of this assertion as well as an
analysis of how well the heuristic segment (i, j, s) performs; i.e. for what values of ¢
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Algorithm 2.10 StatSignificance(U,V)

s=0

n=||Wj

m = U]

r = number of purines in W

r. = number of purines in U
// m—r = number of pyrimidines in W
// r—=r, = number of purines in V

H(W) = =5 logy () = 7 logy (*5°)

n

for k = max(0,7+m —n) to min(m,r) {
let U” have k purines and m-k pyrimidines
let V° have r-k purines and n-m- (r-k) pyrimidines
// m—r, = number of pyrimidines in U
// n—m—(r—r,) = number of pyrimidines in V’
H(U") = = £ log, (&) — mok log, (k)

ey —k — ke n—m—(r—k) n—m—{(r—k)
H(‘ ) - *‘r:*m l()gz(r;—m) - n—m log‘)(? n—m )

if (HW)=-L2HWU") - 2=EH(V") < JS:(UV))
s=s+h(n,r;m, k)

return s

Algorithm 2.11 segment(i,j,s)

void segment (int i, int j, double s) {
max = 0
for k = 1 to j-1 {
if statSig(i,j,k) > max then
max = statSig(i,j, k)
}
if max > s then ({
segment (i, k, s)
output split point k
segment (k+1,3,s)

71
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does the above algorithm output a segmentation whose divergence is within factor € of the
maximum JS*(s)?

2.4 Exercises
Probability

1. It is estimated that the nucleotide substitution rate A per site per year for nuclear
DNA of higher primates is 1.3 x 10~°. Histone H4 consists of 105 amino
acids, and hence 315 nucleotides. Assuming that nucleotide substitutions occur
uniformly across the 315 sites of histone H4, what is the least number of nucleotide
substitutions, where with probability at least 0.5 two substitutions have occurred
at the same site? Using A, estimate the amount of time that has elapsed for this to
oceur.

HINT Determine the least n such that []}'7 2221 < 0.5 and compute the time
n/A.

Before sequencing was widespread, A. Kornberg'? pioneered a laboratory technique
to measure the relative frequencies p(A|A4), etc. in a nucleotide sequence, where
p(X]Y") is the conditional probability that nucleotide X follows nucleotide Y.
Suppose that one has all the 16 relative frequencies. Show how to compute the base
trequencies p(A4). p(C), p(G), p(T).

9

HINT
Op(Al4) + p(C)p(A|C) + p(G)p(AIG) + p(T)p(A|IT) = p(4),
p(C1C) + p(C)p(CIC) + p(G)p(C|G) + p(T)p(CIT) = p(C),
(Gp(G|G) + p(C)p(GIC) + p(G)p(G|G) + p(T)p(GIT) = p(G),
T)p(T|T) + p(C)p(T|C) + p(G)p(T|G) + p(T)p(T|T) = p(T).

This yields a linear system of 4 equalities with 4 unknowns.

3. Write a program to compute powers P of the matrices given below. State whether
cach matrix is stochastic, doubly-stochastic, or substochastic, and whether the
corresponding Markov chains are irreducible and aperiodic. For the latter, compute
the stationary probabilities.

(a)

010
P = 1 00
0 0 1
(b)
05 05 0
P = 0 05 05

15 Nobel Prize for discovery of DN A polymerase.
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(©)
0.5 00 05
P=| 025 025 0.5
0.25 0.75 0.0
(d)
05 00 05
P= 09 00 01
0.25 0.75 0.0
(e)
0.5 00 025
P=1 025 025 025
025 0.75 0.0
4. Determine the maximum likelihood of the coin-flipping example from Section 2.1.6,

®

L(p) = p™ (1 = p)' =5 o prn (1 = p) U mon) = pRi(1 — p) 210,

by computing the maximum of log L(M ).

A car drives through n stoplights. For each stoplight, the probability of a red light is
0.6, while the probability of a green light is 0.4 (there is no yellow light). Compute
the probability Pr[X = k], where X = k is the event that the car stops for the first
time in going through the kth stoplight. Here X = 0 is the event that the car stops at
no stoplight. Compute the expectation E[X], i.e. the average number of stoplights
at which a car first stops. What is the name of this probability distribution?

Combinatorial Optimization
Consider the function
f@)=a*+22% -2~z +2 (2.29)

on the closed interval [—2,2]. Implement a Monte Carlo program with simulated
annealing in order to determine the minimum of f in this interval.

. Determine the maximum of the function in the previous exercise by implementing

a genetic algorithm.

HINT Divide the interval [—2, 2] into M subintervals, where M = 2" (for 2-place
decimal accuracy, let M = 512, which is larger than 4 x 10%). Your program should
maintain a population of size m < M of bit strings of length n, corresponding
to appropriate subintervals. Fitness of the bit string # = x,_1,... ,29 € P(t) is

f(=2+ 4ZJJ—E‘—) where f is given in equation (2.29).

Using gradient descent, find the minimum of f, where f is given in equation (2.29).
Certain virus genomes actually code for different proteins in overlapping regions by
shifting the reading frame; this fantastic optimization of code allows for very short
genomes. Devise a method of testing whether the genetic code has been optimized
in part to allow overlapping reading frames, for the current proteins in the PDB.

73
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10. In a similar manner to the simulated annealing algorithm described in the text,
implement a genetic algorithm to find optimized (artificial) genetic codes.

11. Detine O(n,m) to be the number of onto maps from {1,... ;n} onto {1,...,m}.

Give a recurrence relation for O(n,m) and write a program to compute O(n,m).
Using this, determine the number of general genetic codes.
HINT. Note that O(n+ 1,m+1) = (m+1)O(n,m) + (m+ 1)O(n,m + 1), where
the first term arises by mapping the last element n + 1 to one of the m + 1 elements
of the range, and then mapping the remaining n elements of the domain in an onto
manner to the remaining mn elements of the range.

12, S. Kauffman [Kau70] introduced the random boolean celiular automaton as a
possible model for the regulation of gene expression (how genes are turned off and
on).

A boolean cellular automaton B is given by (G, ﬁ T), where

o G = (V. E)isadirected graph, V" = {1,... .n},and E C V" x 1" (so that loops
but no multiple directed edges are allowed);

o = (fi.....fn). where for each 1 < i < n, the fan-in of vertex i is m(i) and
fi 40,13 {0, 1};

o F=(ay,... . r,) € {0, 1}

Suppose that vertex ¢ of fan-in m (i) has in-edges from vertices v; | < -+ < ¥ (i)-
Then for state ¥ = (y1,. .. .yn) € {0,1}", define
B(.l]) = (.fl (l"l.l LRI Ul.m(l))! ) fn('”mh s -"Un,m(n)))‘

The state of B = (G, f ) at time 0 is the initial state X'. At time 1, the state of B
is B(X). and generally at time ¢ the state of B is B'')(F) = B(B(---B(Z¥)--+))
where there are t occurrences of B.

Boolean cellular automata were simulated on computer by S. Kauffman, who
reported a surprising stability manifested by random automata. The first formal
proofs of certain stable behavior were worked out by Luczak and Cohen [LC91],
and a refutation of one of Kauffman’s claims was given by J. Lynch [Lyn93, Lyn95].
Write a simulation program for Kaufmann’s boolean cellular automata. Your
program should be able to read in a text file description of a boolean cellular
automaton, and then simulate it, as well as be capable of generating and simufating
random boolean cellular automata. With this, test Kaufmann’s conjecture that
the cycle time is O(y/n) for a random boolean cellular automaton (a conjecture
disproved by J. Lynch [Lyn93, Lyn95] by difficult probabilistic analysis). Compare
your results with the impressive random boolean cellular automaton simulation
program of A. Wuensche at the Santa Fe Institute (see the web page of A. Wuensche
athttp://www.santafe.edu/).

13. Certain organisms, such as yeast, can exist in both haploid and diploid form. Genes
can be masked when in diploid form; in particular, when one gene is not functional,
a diploid organism can survive because of the functional allele. Devise a program to
simulate an organism that under environmental stress (lack of nutrients, high salt or
pH, etc.) will switch from diploid to haploid state, thus expressing all genes.

14. Consider the following intriguing idea, first proposed by Pudldk and Pudldk [PP97].
Assume that there are genes that control whether another gene is dominant or
recessive. Devise a simulation program to determine whether the survival chances
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15.

18.
19.

of a population are increased by the ability, under environmental stress, to switch a
dominant gene to a recessive gene, or vice versa.

Entropy

Write a program to compute the frequencies of nucleotides and of dinucleotides
from an input file. Using the data for M. jannaschii, answer the following questions:

(a) What is the G + C content of M. jannaschii? How does this G + C content
compare with that of Haemophilus influenzae and of Mycoplasma genitalium
(see [FAW195 FGW195])?

(b) How many Ys occur in the chromosome of M. jannaschii? How about Ns? What
percentage of the genome was not uniquely determined (i.e. codes different from
A,C,G,T)?

(c) TA is a dinucleotide often appearing in regulatory segments of the genome
(e.g. the TATA box). What is the relative abundance pry = —f%ﬁj of TA in
M. jannaschii? Is it less than the relative abundance of other dinucleotides?
How does the TA relative abundance in M. jannaschii compare with that in
Haemophilus influenzae and Mycoplasma genitalium?

. Roughly 10% of the codons in the genetic code (6 out of the 61 codons that code

for amino acids) code the amino acid leucine. Write a program to determine the
frequency of leucines'® in a fragment of the protein database. Is the frequency you
compute roughly 10%? Try the same for other amino acids.

. What is the average ratio of hydrophobic to hydrophilic residues in proteins from

the protein database? What about for specific classes of proteins (globular, kinases,
etc.)? Use a modification of the polar requirement of C. Woese et al. [WDD™"66] as
a measure of hydrophobicity.
With the genomic data of M. jannaschii, compute Hy, H* D, and H,, H", D,.
Following R.Verin [CV99], implement as follows a linear time technique for the
possible identification of genomic regions having repetitions (either many short
repetitions, or a few large repetitions). If X is a finite alphabet (for instance ¥ =
{A,C,G,T}) then £* denotes the set of all finite words in this alphabet. If u, w are
words in alphabet ¥, then u is a subword u of w if there exists a prefix x and suffix
y, for which zuy = w. Denote the set of subwords of word w by S(w), and denote
the subword count of a current window by wc .

Leta,---any € {A,C,G,T}* be genomic data, and fix the size k of a window.
Count the number of distinct subwords in every window of the genome. A window
consisting of

AAA---A

has k + 1 many non-empty subwords — namely A, AA, ..., A¥ together with the
empty word lambda. On the other hand there are at most (g) many subwords in
a window of size k. Verin’s heuristic is that areas where a repetition is found have
linear we values (i.e. low), while in other regions, the value is nonlinear (i.e. high).

75

16 That is, the average of the ratio number of leucines in a protein over the number of residues in a protein.
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To compare two windows, define
S(w) = S(w) U S(w),
where (w) is the reverse complement of w. Jaccard’s index is defined by

: [S(u) N S(v)]
indj(u,v) = .
ind (U 0) = S TS ()]

Clearly indj(u,u) = 1, and if v and v do not share many subwords, then ind(u, v)
is a small value near 0. Implement these heuristics and investigate the genome of £.
coli.

. By detinition if p, q are probabilities whose sum is 1, then

H(p,q) = —plup — (1 — p) In(1 — p).

Letting F'(p) denote the right-hand side of this equation, graph F' as a function of p
on the interval [0, 1].

. Generalize the previous exercise to probability distribution p, g, r, where p+q+r =

1. Thus

H(p.q.r) = —plnp—qlng~ (1 -p—q) In(1-p—q).

Letting F'(p, q) denote the right-hand side of this equation, graph F as a function of
pogon [0.1] x [0, 1].

. Discretize some common continuous probability distributions (such as the normal,

exponential, Poisson, and Boltzmann distributions), and compute the entropies.

Suppose that 0 < p,q,r < 1 satisfy p + ¢ + r = 1. Prove that the entropy

H(p,q.r) = — (plnp + ¢lng + rInr) attains a unique maximum when p = ¢ =
1

r = 3

HINT Define the function

Gp.q)=Hp,q.1-p-q)=—-[plnp+qlng+(1-p-q) In(1-p-q)
and set G's partial derivatives equal to 0. Thus

oG
dp

I

-1+hp-1—-In(1 -p-q))

= —[lnp~In(1-p-q)],

s0 (:T(p' =0ifflnp = In(1 — p ~ ¢), and similarly %—3 =0ifflng=1n(1 —p—q).

Thus the point (p, ¢) is a stationary pointof G iff p=1—-p—gandg=1-p—gq,

where one readily computes thatp = ¢ =r = %
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2.5 Appendix: Modification of Bezout’s Lemma

In this section, we prove an apparently new technical Lemma 2.16, used in our proof that
finite, aperiodic, irreducible Markov chains have an equilibrium distribution. We begin with a
classic number theoretic result, known as Bezout’s Lemma.

LEMMA 2.27 (BEZOUT)
Suppose that z, ... ,x,, are positive integers, and that d = gcd(z:,... ,x,,). Then there
existay,... ,a,, € Z suchthatd = a1x1 + - - + @mTm.

PROOF Define d to be the smallest positive element in the ideal I = {c1z1 + -+ - + ez |
Cly...,cm € Z}, and define J = {cd | ¢ € Z}. We claim that ] = .J and that
d=ged(zy,...,Tn).

Clearly J C I. We claim that I C J. If not, then let e be the smallest positive element in
I — J. Since I is closed under multiplication by elements in Z and by addition of elements in
I, e mod d € I and is smaller than d, contradicting the choice of d. Thus I = J.

Since every element of I is a multiple of d, it follows that d divides each of z;,... ,xp,.
Now suppose that e divides each of zj,... ,z,,, so that there exist ¢, ... ,qm, such that
x; = eq; for1 < i < m. Then since d € I, there existay, ... ,a,, such that

d = g+ -+apTy

= aq1e+ -+ amgme,

and hence e divides d. Thus d is the greatest common divisorof &y, ... ,x,,. u

An alternate, somewhat longer proof of Bezout’s Lemma uses the Euclidean gcd algorithm
to compute the q;. It follows from Bezout’s Lemma that if x;,... ,x,, are relatively prime,
then for every n there existay, ... ,a,, € Z such thatn = ayz; + --- + a;nT,,. We plan to
show that for n sufficiently large, the a; can be chosen to be non-negative.

LEMMA 2.28
Let z,y be positive integers and d = ged(z,y). For all integers n, if nd > xy, then there exist
r,s € N such thatnd = rx + sy.

PROOF Let nd > zy. Bezout’s Lemma implies the existence of r',s’ € Z such that
d =r'z + s'y, and hence nd = nr'z + ns'y.

CASE l:nr',ns' >0

In this case, the statement of the current lemma is satisfied with r = nr’ and s = ns’.

CASE 2 Without loss of generality, assume that nd = azx — by, fora, b > 1.

Let

= ad'y+ry, where0<r <y,
b = bx+ry, whered<ry <z
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so that

nd = (dy+mr)e—Or+nr)y
xyla = V) +rie —ryy.

Now if @’ — ' < O, then nd < xy(a’ — ¥') + rir < ryx < ry, contradicting the hypothesis
that nd > ry. Thus ' > b’ and so
nd = xyla —b —1)+xy +rie—ry
= ay(a =V - 1) +ylx—ri)+nrr
= alyld = b = 1) +r]+ylz—ry).

Letting r = y(a' =¥ — 1) +r and s = & — ry, we have nd = rx + sy, wherer,s > 0. R
g Yy y

LEMMA 2.29
Let d = ged(xy, ... xy). For all n, if nd > x,---x,, then there exist non-negative
(ay.... .ay suchthatnd = ajxy + - -+ ap o,

PROOF The general inductive proof is a notational variant of the case, where m = 3, which
we prove here. Suppose that d = ged(x,y, z) and let n satisfy nd > ryz. By Bezout’s
Lemma. there exist r,s.t € Z such that nd = rx + sy + tz. Let e = ged(y, ). so that
d = ged(r,e).

If any of &, y, = equals 1, then the lemma easily follows. Suppose, for instance, that z = 1.
By setting a = 1. b = 0, ¢ = 0, we have ax + by + ¢z = 1. Thus without loss of generality,
assume that &, y. = > 2. By Lemma 2.28, there exist a, b > 0 such that nd = ax + be. Let

a = de+r;, where)<r <e,
b = br+ry, where0<pry <u,
and so
nd = (ade+r)e+ dr+r)e

= ary +e(dr+ba+1).

CLAM e(a'r +bar +1ry) > yz.

PROOF If not, then nd < ryx +yz < ex +yz < yx+yz = y(r+ z) < ryz. where we have
used the facts that e = ged(y, z) < min(y, z) < y and that z, z > 2. Since we assumed that
nd > ryz, this contradiction establishes the claim.

Thus e(a'c + b'o + ry) > yz, and by Lemma 2.28, there exist s,t > 0 such that
e(d'r + e+ ry) = sy + tz. Setting r = ry, it follows that nd = rx + sy + tz. Since

the general inductive case for in > 3 is analogous, this establishes the lemma. ]
Specializing the previous lemma to the case where ged(x;,... ,x,,) = 1, we have the
following.

COROLLARY 2.30
Ifey, ... x, > larerelatively prime, then foralln > x, - - - x,,, thereexista,, ... ,a,, >0
suchthatn = ayxr; + - -+ amxy,.
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We can now prove the Positive Transition Matrix Lemma 2.16, which is restated for
convenience.

LEMMA 2.31 (POSITIVE TRANSITION MATRIX)
If M = (Q,w, P) is a finite, aperiodic, irreducible Markov chain, then there exists N > 0
such that PN is strictly positive.

PROOF  Suppose that [)] = n, and fix state ¢ € Q. By aperiodicity, the period of i is

1; ie ged({t > 1 | pl“ > 0}) = 1. It follows that there exist m and t,.... ,t, such
that pm.) > 0,. )f’l" > 0 and ged(t,,... ,t,,) = 1. Define N; = t;---t,,. By
Corollary 2.30, for N > N, there existay, ... ,a,n >0 such that N = ait; + - + a,nt,.

Since P consists of non-negative entries, 1fp >0 and p ’'> 0, then then pfrﬁ” > 0 forall

multiples kt, and pl'f'” 0. Thus for all N > N, p '> 0.

The previous analysis holds for each fixed i € Q. It follows that for any N >
max(Ny, ..., N,), pI‘:‘) > (. Now clearly ifpgf) > 0 and pfl’ > 0, then p (V=AM 0,
By hmteness of () and the definition of irreducibility, it thus follows that there exnsts N such
that p ''> 0 forall i. .J € @ (in fact the proof establishes that p "> 0 forall 1,j € (and

N' > \) This completes the proof of the lemma. n
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3
Sequence Alignment

We have seen that the members of the same class, independently of their
habits of life, resemble each other in the general plan of their organization.
This resemblance is often expressed by the term ‘unity of type’, or by
saying that the several parts and organs in the different species of the class
are homologous. (C. Darwin, Origin of Species, 1859 [Dar58}])

As already mentioned, M. jannaschii is a methane-generating archaebacterium living at depths
over 2.5 km on the ocean floor, near deep-sea thermal vents. From sequence comparisons of
M. jannaschii with prokaryotes and eucharyotes, Bult et al. [BWOT96] firmly established
the validity of Woese’s theory that Archea is a third life domain, along with the other two
domains Prokarya and Eukarya. M. jannaschii has 1738 genes, and by performing sequence
alignment with other genomes, it appears that archaebacteria share an evolutionary heritage
with eukaryotes for transcription, translation, and DNA replication, yet share certain other
features with prokaryotes, since for instance archaebacteria have no nuclear membrane.

In this chapter, we will cover dynamic programming sequence alignment algorithms, and
some of their applications. A good example of a recent commercial application of sequence
alignment and homology testing was given by Richard Roberts' in [Rob97]. Restriction
enzymes appear to be certain bacteria’s defense system against phages. Type Il restriction
enzymes (such as the well-known ecoRI endonuclease) recognize a small fragment of double-
stranded DNA and cut both strands, either with a blunt cut, or leaving sticky ends. For
instance, ecoRI recognizes the hexanucleotide palindrome G AATTC, and cuts, leaving

sticky ends as indicated below:
AATTC - --
- GUATTC - - -
and
. CTTAAG---
--CTTAA

1 Nobel Prize for the discovery of introns.
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In order to protect itself from the action of its own restriction enzymes, a bacterium
methylates® restriction enzyme recognition sites of its own genome. At the current time,’
there are 3154 discovered restriction enzymes, some 5604 publications, and out of 16
(resp. 64) possible tetranucleotide (resp. hexanucleotide) palindromes (such as AAGG (resp.
GAATTQ)), all but 2 (resp. 2) have been shown to be recognition sites for certain restriction
enzymes. Though there appears to be no recognizable sequence homology between different
restriction enzyme genes, there is sequence homology between different recognition site
methylation genes. Using this principle, the group of R. Roberts has successfully developed
the REBASE [RM99] software to locate likely candidates for potential restriction enzymes
within genomic databases.

We should like to define the distance between two sequences @ ---a,, and by ---b,,.
allowing inexact matches, in producing an alignment. Of course, the usual distance measures
(Euclidean distance, Hamming distance, etc.) have little bearing on this problem, since the
sequences have possibly different lengths (though there is work in mathematical evolution
theory, where Hamming distance is used).

For instance, given an initial sequence ACGTACGT of length 8, after 9540 generations,
the sequence ACACGGTCCTAATAATGGCC was generated, assuming probability of deletion
0.0001, probability of insertion 0.001, probability of transitional substitution 0.00008,
and probability of transversional substitution 0.00002. On a different program run
with the same parameters, after 9540 generations, ACGTACGT evolved into the rather
different sequence CAGGAAGATCTTAGTTC. The sequences ACACGGTCCTAATAATGGCC
and CAGGAAGATCTTAGTTC are related in that both evolved from the same ancestor
sequence ACGTACGT. What is their true, or historically accurate alignment? This question
makes sense, because in the simulation program that generated the mutated sequences, the
type and position of edit operation (delete, insertion, substitution) were taken into account.
The true alignments are

--ACG-T-A--~CG-T----
ACACGGTCCTAATAATGGCC

and
---AC-GTA-C--G-T--
CAG-GAAGATCTTAGTTC
50, by superposition, we obtain

-ACAC-GGTCCTAAT--AATGGCC
CAG-GAA-G-AT--CTTAGTTC--

In contrast, Gotoh's algorithm with mismatch penalty of 3 and gap penalty function
g(k) = 2 4 2k for length k gap (discussed in this chapter). yields a completely different
alignment:

ACACG-~-GTCCTAATAATGGCC
-CAGGAAGATCT--TAGTT--C

There is recent work to determine the choice of mismatch and gap parameter, using in
part the significance of an alignment score (significance is determined by how many random
sequences having the same base composition have a better alignment score).

2 To methylate means to add a CHy group to a nucleotide base.
3 November I, 1999. Thanks to Dr R.J. Roberts for information (personal correspondence).
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3.1 Motivating Example

In this section, we present a motivating example to give a more concrete understanding
of some of the problems involved in sequence comparison. One of the purposes of
sequence alignment is to detect homologous proteins. Two proteins (or protein domains) are
homologous if they have evolved from a common predecessor. Usually, this implies that the
two proteins have a similar structure and function. Homology is a very important concept
in biology that is used as a fine-grained criterion to group together different proteins (with
known structures). There are currently two principal databases for the hierarchical structural
classification of proteins — namely CATH [OMJ*97] and scop [MBHC95]. CATH classifies
proteins according to Class (where the different protein classes are mainly Alpha, mainly Beta,
Alpha and Beta, and proteins having few secondary structures), Architecture (which is the
description of the gross overall arrangement of the secondary structure elements), Topology
(which takes into account the overall shape as well as the connectivity of the secondary
structure elements, using structural comparison algorithms), and Homology (where proteins
are grouped together if they are believed to have a common ancestor). In deciding whether two
proteins are homologous, sequence alignment is one of the techniques used. scop (Structural
Classifcation of Proteins) has a similar hierarchical structure, where proteins are grouped
according to fold (major structural similarity), superfamily (probable common evolutionary
origin) and family (clear evolutionary relationship).

As an example of homologous proteins, we consider the family of reverse transcriptases.
Reverse transcriptases are used by retroviruses to replicate their own genetic information,
which is stored in RNA. This RNA is translated back into DNA (for duplication) using reverse
transcriptase. As an example, we take reverse transcriptase of Moloney murine leukemia virus,
and the reverse transcriptase of HIV Type 1 virus. The structures of the homologous domains

Figure 3.1 Two homologous proteins of the reverse transcriptase family. The first protein is domain 1
of reverse transcriptase of the Moloney murine leukemia virus (PDB code IMML [GJO195]), and the
second is domain 1 of the A chain of the HIV Type 1 reverse transcriptase (PDB code 1RTH [REG195]).
For both proteins, we show the backbone structure and indicate the location of the secondary structure
elements (o helices and 3 strands). The two structures show a high degree of similarity in the
arrangement of the secondary structure elements (especially the long helix and the four long 3 strands
forming a /3 sheet).
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Figure 3.2 Part of an alignment of Mmlv reverse transcriptase (PDB code |MML) and HIV-1 reverse
transcriptase (PDB code 1RTH). The alignments were produced using the FASTA package [PL88] with
the BlosumS0 substitution matrix (HH92]. The sequence of the first domains of both chains are printed
in black, while all other amino acids are printed in gray. Thicker gray bars indicate an exact matching
of amino acids, whereas the thinner gray bars indicate amino acids that are similar according to the
BlossumS50 similarity matrix.

are shown in Figure 3.1. They are classified as homologous by both the CATH database and
the SCOP database.

As already mentioned, sequence alignment is one of the steps used to determine whether
two proteins are homologous. Figure 3.2 shows the sequence alignment for the amino acid
sequences of both protein domains. There are several problems involved in finding a good
sequence alignment. First, the question is whether to align a complete protein sequence or
only part of it (since it may be the case that only a part of the protein has been conserved).
This is the difference between global and local sequence alignment. Second, major parts of
the alignment are substitutions of amino acids by other amino acids, which have ‘similar
properties’. These substitutions are shown using thin gray bars (instead of thicker ones, which
are used for exact matches). Now the question is how to weight the different substitutions (the
weights are in tact measures of the similarity between amino acids). This will be discussed in
the next section, which treats scoring matrices.

3.2 Scoring Matrices

Alignments are used to reveal homologous proteins, or regions of proteins that are conserved
in different proteins. Since evolution is a stochastic process, it is clear that there cannot be
one single correct alignment. Instead, there are different possible alignments, and we have to
choose the ‘correct’ ones (although we never know for sure which alignment is correct). To
do this, one associates a score with every alignment, where the alignments with the highest
score are the ones to be selected.

Before we can choose an appropriate scoring function, we have first to fix the underlying
evolutionary model. Usually, we have an evolutionary model where sequences can be mutated
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using insertions, deletions or substitutions. Of course, this is a simplification, and there are
approaches to incorporate other kinds of mutations as well. An example is tandem repeats,
which will be discussed in this chapter.

If we take insertion/deletions and substitution as possible evolutionary events, a scoring
function can easily be based on scores for the different operations (since any alignment can be
decomposed in a unique way in deletions/insertions and substitutions). Under the assumption
that the different operations occurred independently, the complete score can be taken to be the
sum of scores associated with the different operations.

We will show how to generate a scoring function for substitutions of amino acids. The
reason is that there is a well-established theory for generating scores for substitutions. In this
case, the scores for the different substitutions are stored in a substitution score matrix, which
contains for every pair (A, B) of amino acids an entry s 4 g (the score for aligning 4 with B).
Clearly, the selection of an appropriate substitution score matrix is crucial for achieving good
alignments.

There are different manners in which a substitution score matrix can be derived. The first
is an ad hoc approach — i.e. a biologist can always set up a score matrix that produces
good alignments. The second approach is to derive a score matrix from physical/chemical
properties. The idea behind this approach is that an amino acid is more likely to be substituted
by another if their properties are similar. The third and most often used approach is a statistical
one. To be more precise, let s and s’ be two amino acid sequences of length n, whose
alignment score we would like to give, assuming that only substitutions (no insertions or
deletions) are used in transforming s into s’. Using reliable amino acid substitution matrices
allows one later to compute optimal local sequence alignments between two proteins of
possibly different length; i.e. to find subsequences of the same length in the two proteins
that are conserved.

Score Matrices Based on a Statistical Model

The score for aligning s with s’ is generated by comparing two different hypothesis. The first
hypothesis (the null hypothesis) is that s and s’ do not stem from a common predecessor, i.e.,
that we have an alignment by chance. This hypothesis assumes an underlying random model
R that generates two sequences s and s’ randomly. Assurning a probability ¢4 for producing
an amino acid A in the model R (where we set g4 to be the relative frequency of the amino
acid A in proteins), the probability P(s, s'|R) for the null hypothesis is given by

P(s,s'|R) = H qs, H gs; = H 4s,9s;-

1<i<n  1<i<n 1<i<n

The second hypothesis (or the homologous hypothesis) is that s and s’ stem from the
same predecessor. The underlying model E is an evolutionary model. One assumes that
there is an unknown ancestor sequence r of length n, from which s and s’ are generated
by random substitution of amino acids. Furthermore, we assume in the model E that p4 g is
the probability that the amino acids A and B are aligned and have hence been derived from
an ancestor amino acid C. How to determine these probabilities will be explained later. Given
the probabilities p 4 g, the probability P(s, s’|E) for the homologous hypothesis is given by

P(s,s'\E) = [] pors-

1<i<n
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In principle, we want to determine what the chance (or what the odds are) is that the
alignment of s and s’ reflects the fact that we have aligned conserved regions. Hence, a
reasonable score for the alignment of s with s’ is generated by comparing the probability
of the homologous hypothesis with the null hypothesis. This is called the odds ratio:

P(s,s'|E) nglgnps;s; _ Ds;s;
P(S,SIIR) HISIS" 4s,4s; 1<i<n ds,4s,

Therefore, we can generate an appropriate score for the alignment of s and s’ from scores
ﬁ‘— for the amino acid pairings (s;, ;) (with 1 <! < n} in the alignment of s and 5. To
19

achieve a scoring function that is additive instead of multiplicative, one defines the entries of

the substitution score matrix by log odds ratios:

PAB
q9A4B

sap = log (3.1)
In fact, it has been shown that any score matrix consists of log odds ratios under reasonable
assumptions (see {Alt91]).

PAM and Amino Acid Pair Probabilities

The next problem is to determine an appropriate evolutionary model E. To be more precise,
the model E is a model E((p4p)ap) that is parameterized in the pair probabilities p .45, and
we want to find these probabilities. In a statistical approach, these probabilities have to be
estimated from data. This can be done if we have two sequences s and s’ for which we know
that they are homologous.* Estimating p 4 from the known alignment of s with s’ means that
we want to find parameters p 4 p that maximize

P(E((pap)as)ls.s").

To do this, we apply a maximume-likelihood approach, i.e., we compute parameters p 4 that
maximize

P(s,s'|E((paB)aB))-

A simple calculation using Lagrange multipliers (see the appendix to this chapter, Section 3.9)
shows that the maximum is achieved if we set

nap(s,s’)
PAB= ——
n

where n.45(s, s’) is the number of times the amino acids 4 and B are aligned in one column

nag(s.s’)

- is the relative

in the alignment of s and s’, and n is the length of s (and s'). Thus
frequency of a pair (A, B) in the alignment of s and s'.
This approach was used for the first time by Dayhoff, Schwartz, and Orcutt [DSO78] to

generate the so-called PAM matrices, perhaps the most widely used substitution matrices.

L Of course. this approach can be generalized to several homologous sequences.
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To construct the PAM matrix, Dayhoff et al. were faced with the problem that the only way
to find sequences s and s’ believed to be homologous is to apply (local) sequence alignment.
Hence, to find good substitution matrices for sequence alignment, one needs to apply sequence
alignment, which sounds like a vicious circle. To overcome this problem, Dayhoff et al.
considered only very closely related sequences (i.e., sequences that differ in at most 15%
of their amino acids). The resulting alignment is thus very likely to reflect homology.

This approach yields a substitution score matrix (often simply called substitution matrix),
which is valid only for sequences that are as closely related as the sequences used in generating
the score matrix. On the other hand, one would like to align sequences that are more distantly
related as well. To this end, Dayhoff et al. introduced an additional parameter ¢, which models
the evolutionary time scale; i.e. they defined pair probabilities

pap(t) = P(A, Blt)

that depend on time ¢, rather than p4p in our earlier discussion. How can one generate
probabilities P(A, B|t) for different values of ¢? Let

P(B|A,t)

denote the probability that amino acid A is substituted by B within evolutionary distance f.
Assuming that time directionality of evolution can be ignored, we have

P(A, B|t) = P(B|A,t)P(At).
Assuming that the distribution of amino acids does not change during evolution, we have that
P(A|t) = P(A) = qa, hence P(A, B|t) = P(B|A,t)q4, which implies that

P(4, Blt)

P(BI4,0) = =~

(3.2)

By equation (3.2), P(B|A,t) can be estimated from the relative frequency of the pair (A4, B)
in the known alignment of two sequences s and s’ with distance ¢, and from the relative
frequency g4 of the amino acid A.

The advantage of this approach is that from the matrix

M= (P(BIA,t))AB

of substitution probabilities for all pairs of amino acids for a specific evolutionary distance t,
we can generate the matrix

M' = (P(B|A, kt))ap
of substitution probabilities for any k € N, simply by setting
M' = M*.

This allows the extrapolation of substitution probabilities over a longer time scale. From the
substitution probabilities, a score matrix can be generated by equations (3.2) and (3.1).

How can the values P(B|A,t) be adjusted to allow for arbitrary distances ¢? For this
purpose, Dayhoff et al. introduced the evolutionary time scale PAM, which is an acronym for
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‘point accepted mutation’. Two sequences s and s’ have an evolutionary distance of 1 PAM
if s was converted into s’ by a series of accepted substitutions with an average of 1 accepted
substitution per 100 amino acids. Since substitution can occur at the same amino acid site
several times, a distance of n PAM between two sequences s and s’ does not necessarily
imply that exactly n% of the amino acid positions of s and s’ differ (models for substitution
of amino acids and nucleotides will be discussed in Chapter 4). For this reason, it is possible
to consider sequences whose PAM distance is greater than 100 (the PAM-250 substitution
matrix is widely used). A substitution matrix

M = (P(B|A,t))aB

is defined to be 1 PAM if the expected number of substitutions in a ‘typical’ protein using the
substitution probabilities P(A, Blt) is 1%. By the previous discussion, an n PAM matrix N
can be generated from a 1 PAM matrix M by computing the nth power of M;i.e. N = M™,

We can hardly expect to find homologous sequences s and s’ having exactly | PAM
distance. Dayhoff et al. therefore scaled the values P(B|A,t) for A # B by a value A,
such that the resulting substitution probabilities imply an expected substitution frequency of
1% (one amino acid among every 100 amino acids). More precisely, in the estimation of
P(B]A4,t) from a known alignment of sequences s and s’, Dayhoff ez al. set

nap(s,s)

P(B
qa

At)y= A
for B # A, and defined

P(A]4,t) =1- > P(B|A,1),
B#A

where A was chosen so that the resulting substitution matrix is 1 PAM.

The PAM matrices have been used with much success, their only problem being that since
the entries in the 1 PAM matrix were estimated from very closely related sequences, it is
therefore difficult to extrapolate to more distantly related proteins. For this reason, Henikoff
and Henikoff [HH92] used highly conserved regions in multiple sequence alignments
of several distantly related proteins, rather than pairwise alignment, in generating their
BLOSUM matrices. Experimental results have shown that the BLOSUM matrices are better
suited for aligning more distantly related proteins.

3.3 Global Pairwise Sequence Alignment
3.3.1 Distance Methods

There are two different problems involved when comparing two similar sequences. The first
one is to calculate the distance between the two different sequences (i.e., are the sequences
similar or not?). The second problem is to align the sequences in order to find conserved
regions. Hence, we will give two different definitions for comparing sequences, namely edit
distance and alignment (and alignment distance), and we will show under which conditions
these two definitions yield the same result.

Let ¥ be a finite alphabet. A word a € £* is simply a sequence a; ...an, where n € N
and a; € L, for 1 < i < n. The length of word a is denoted |a|. The empty word is denoted
A. With £1 we denote the set *\\. The gap symbol is —.
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We first define the simplest notion of edit distance for two sequences a, b. The edit distance
is interpreted as the number of evolutionary operations to transform a string a into b using
mutation, insertion and deletion of one symbol as the only evolutionary operations. The edit
distance, unlike the approach of Waterman et al. [WSB76], has no special treatment for gaps;
i.e. a size k gap is treated as k many single gaps (either insertions or deletions). Biologically,
this is not realistic, so we retain the term edit distance for the approach of Needleman-
Wunsch [NW70].

DEFINITION 3.1 (EDIT OPERATION)
Given an alphabet ¥ with — ¢ ¥, an edit operation is a pair

(z.y) € EU{-}Dx(EU{-}).
We say that an edit operation (z,y) is a

e substitution if z,y € ¥ withz # y,
e insertion ifr = —andy € X,
o deletionifzr € X andy = —.

Givena,b € (X U {—})* and an edit operation (x,y) such that x # y, we write
a —)(Ly) b

if b can be obtained from a by replacing one occurrence of x by y (if z,y € X), or by
deleting one occurrence of x (if y = —), or by inserting one occurrence of y (if r = —). If
S = s1...8, is a sequence of edit operations, then we write

a=>sbh
ifa=a® —, a5, -+ >, a'"”) =bforwordsa® ... a!".

We will use indels as short for insertions or deletions. Note that the edit operations can be
applied at every position of the string. Context-sensitive edit operations (i.e., edit operations
that for instance produce lethal mutations) are computationally more powerful than the edit
operations defined above [BC97].

In evolution, some types of mutation happen more often than others. This is simulated in the
definition of an edit distance by weighing the edit operations. Let w(zx, y) be a cost function
assigning weights to the edit operations.

DEFINITION 3.2 (EDIT DISTANCE)

Given a cost functionw : (XU {-}) x (XU {-}) — R and two words a,b € X*, the cost
of a sequence S = sy ...s, of edit operations is defined as _;_, w(s;). The edit distance of
a, b is defined as

dw(a,b) = min{w(S)|a =g b}.
Usually, when w is implicit, we write D(a, b) rather than d,(a, b).

One must be careful which kind of cost function can be used. For example, one must avoid
the cost of the sequence (A4,C)(C,T) being smaller than of the substitution (4, T') itself.
This and other properties are combined in the notion of a metric.
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DEFINITION 3.3 (METRIC)
A metric d must satisfy the following:

I. d(z,y) =0 iffx = y.
2. d(z,y) = d(y, x) (symmetry).
3. d(x,2) < d(x,y) + d(y, 2) (triangle inequality).

PROPOSITION 3.4
If w is a metric, then d,,, is also a metric.

For the calculation of edit distance, the straightforward definition of edit distance is not very
useful. For this reason, we define the notions of alignment and alignment distance explicitly.
We show that the definitions of alignment distance and edit distance agree in the case that the
cost function is a metric.

DEFINITION 3.5 (ALIGNMENT AND ALIGNMENT DISTANCE)

Let ¥ be an alphabet with — € X. For every u € (X U {~})* we define u|s to be the
restriction of u to ¥ (by deleting all occurrences of — in u). An alignment is a pair (a°, b°)
with a®,b° € (S U {=1})* such that

la®] = |b°]

and there is no position 1 such that

An alignment (a°, b°) is an alignment of (a, b) witha,b € £* if

1. a®|s = a, and
2. 0%y =b.

Given a cost function w, we define the cost of an alignment by

la®|

w(a®,b%) = > w(af,b}).

1=1
The alignment distance of a, b is
di(a,b) = min{w(a®b°) | (a®,b°) alignment of (a,b)}.

Again we write D(a,b) if w is clear from the context. The alignment (a®,b°) is optimal if
ds (a,b) = w(a®,b°).

PROPOSITION 3.6 (ADDITIVITY OF ALIGNMENTS)

Let (a®,b°) and (¢°,d°) be two alignments. Then (a°c®, b°d°®) is also an alignment with
w(a®c®, b°d®) = w(a®,b°%) + w(c®, d®).

PROPOSITION 3.7

Let w be a metric cost function, and a,b € X*. Then for every alignment (a®,b°) of (a,b)
there is a sequence S of edit operations such that a =g b and

w(S) = w(a®,b°).
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For every sequence S such that a =g b, there is an alignment (a®,b°) of (a, b) such that
w(a®,b%) < w(S).
PROOF For every alignment (a°, b°), the sequence S = sy ... 5|0 With
s = (a;)a b?)

is a sequence of edit operations with a =g b and w(a®,b°) = w(s).

The other direction is proven by induction on sequence length. Let S be a sequence of edit
operations with |S| = n + 1. Then S = S’s and there is a ¢ € £* such that

a=>g ¢c—gb.

We prove the existence of an alignment (a®, b°) for (a, b) with w(a®,b°) < w(S) for the case
that s is a substitution. The other cases can be proven analogously.

By induction hypothesis, we know that there is an alignment (a®, ¢®) such that w(a®, ¢®) <
w(S"). Note that we can use an arbitrary alignment with this condition. Let { be the position
changed by ¢ —, b (i.e., ¢ is the unique position with ¢; # b;), and let j be the corresponding
position in ¢° (i.e., the position of the ith X-letter in ¢®). We define (a®, b°) with

b() —_ CT . .C;_lbicj+l . .CTCOl,
which is an alignment of (a, b). Then
w(a®,b°) = w(a®,c®) —w(aj,cj) + w(aj,bj)

w(a®, c®) + w(cj, b})

= w(a®,c®) + w(s)
w(S") +w(s) = w(S).
]

Consider as an example the alphabet ¥ = {4,C,G,T} and the two words a =
ACCGGT A and b = AGGCTG. Then one possible alignment is

a® = ACCGG-TA
* = A--GGCTG

A corresponding sequence S of edit operations with a = ¢ b and w(S) = w(a®,b°) is
S=(C,-)(C,-)(-,C)A4,Qq).

REMARK 3.8 Note that Proposition 3.7 is not true if w is not a metric.

THEOREM 3.9 (NEEDLEMAN—WUNSCH EDIT DISTANCE)

Letw : (XU {-}) x (EU{=}) = R be a metric cost function for the given alphabet %.
Let a,b € ¥* with |a|] = n and |b] = m. Define the matrix (D, ;) with0 < i < |a| and
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0<j<|[bby

Doy = 0,
J

Do = Zw(-vbk),
k=1
i

Di,O = Zw(ak»_)7
k=1

Di,j—l +’w(—-,b]‘),
V’l.] >0: D,',J‘ = min Di~1,jfl + w(ai,bj), . (3.3)
Di_yj +w(a;, —)

Then D; ; is the minimum global sequence alignment distance between sequences a and b,
ie.,

D;j=D(ay...a;by...bj).

This theorem furnishes a dynamic programming algorithm (i.e. fills in the distance matrix)
with runtime O(nm) = O(n?) if n > m.

PROOF By induction on pairs (i, j), where (k,1) < (i,j) ifand only if k < 4, or k = 7 and
l < j (lexicographic ordering). So assume as induction hypothesis that we have proven the
theorem for all (k, 1) < (i, 7).

We have to show that for all alignments (u°®,v°) of a; ...a;, by ... b;,

D;; < D(u®,v°),
and that there is an alignment (u°, v°) such that
D(UO,UO) S Di,j'

For the first direction consider an arbitrary alignment (u°,v°) of a; ...a; and by ... b;. Let
r = |u®| = |v°|. Then by Proposition 3.6 we have that

D(uf ...ud, vy ... vp) = D(uy ...ug_q,v5 ... v5_, ) + D(ul,vy). (3.4)
Since u{ = vy = — is excluded by the definition of an alignment, we have the three cases
: a; uy = a uy = -
vy = - vy = bj vy = bj.

Applying the induction hypothesis, we get for the different cases

o o < <
Dij-1 <D(u}...up_),v)...v7_,),
o o < <
resp. D 11 < D(uj...ud_{,vf...v3_,), (3.5)
<o
resp. Di_1; < D(uj...ud_j,v7...v5_))

With (3.4) and the recursion equation (3.3), this yields
D, ; < D(ay...ai by ... by).
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For the other direction, the case distinction shows how to produce an optimal
alignment of (a;...a;,b1...b;) given optimal alignments of (ai...a; b;...bj_1),
(a1 e a,'_l,bl e bj_l) or (a1 e Qi-, bl e bj).

=

With a small modification, we can also easily find all optimal alignments (i.e., alignments
whose distance is minimal). This is achieved via an additional matrix called the trace matrix.
In principle, at every matrix cell we just store pointers that indicate which cells have been
used in calculating the actual cell. The trace matrix (tr; ;) for two words a,b € £* is defined
to be the matrix of elements tr; ; C {«—, 1,'\} with

trO,O = 07
tro; = {«}
tri,O = { T })

Vi, 3> 0: N € try; D;; = D1 -1 +w(aiby),
T € tryj D;; =Di_1;+w(a;—),
—€try; & D;;=D,;_1+w(-,bj).

=
&

A traceback t is an element of {<—, 1,"(}* that is a path in (tr; ;) starting from the lower
right corner of the trace matrix and following the pointer in tr; ; until we reach the upper
left corner. The path is written left to right, i.e., the right end corresponds to tri, s and
the left end to trg o. The alignment (a®, b°) associated with t is generated as follows. Define
a® € (XU{—})* from ¢ by substituting a; for the ith occurrence of _or 1, and by replacing
all occurrences of «— with —. Similarly, we get ° by substituting b; for the jth occurrence of
« or X, and by replacing all occurrences of 1 with —.

EXAMPLE 3.10 Consider the words a = AT and b = AAGT and a cost function where
Ve #y:w(z,y) = 1and w(x,z) = 0. Then the distance matrix (D; ;) for a,b is

AlA|G|T

A
T

Do =

3
2
2

[\C1RILI N

1|2
0|1
11

and the corresponding trace matrix is

A A G T
0 1] 7 | () [+
AN N (=) [
MM = =R TN

One possible traceback, indicated by black arrows, is

NN

The corresponding alignment is

a® = A--T,
AAGT .

o
>
|
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The other possible traceback, indicated by black and dark gray arrows, is

—N

which produces the alignment

a® = -—-A-T,
b = AAGT.

Figure 3.3 shows the distance matrix together with the two tracebacks, which is the more
conventional way of displaying tracebacks. A more complex example can be found in
Section 3.3.2 (see Figure 3.6).

Figure 3.3 Distance matrix and traceback.

By the definition of distance, the insertion (resp. deletion) of a gap of length n has exactly
the same cost as the insertion of n gaps of length 1. This is often biologically unrealistic. So we
refine the definition of alignment distance as given in Definition 3.5 as follows. Given a word
u € (XU{-1})*, we say that u contains a gap of length k at position ¢ if u; ... u; 41 € {—}",
and there is no other subword of u extending u; . . . uj3—; that is composed uniquely of —s.
We define Ay (u) to be the number of different gaps of u that have length k.

DEFINITION 3.11 (ALIGNMENT WITH GAP PENALTY)
A gap penalty is a function g(k) : N — R that is subadditive, i.e.,

Vi, g(k +1) < g(k) + g(l).
A gap penalty is called affine if there are ct, 3 € R such that
g(k) =a+kB.

Given a cost functionw on £ x X, the cost of an alignment (a®, b°) of lengthr = |a®| = |b°|
is defined as

w@ )= > w@l, b))+ Y Acla®)gk)+ Y Ax(b°)g(k
1<i<r 1<k<r 1<k<r
al # =, b8 # —
dS.(a, b) is defined as usual by
dl(z,y) = min{w(a®,b°)|a(a®,b®) alignment of (a,b)}.

Again we write D(a, b) ifw is clear from the context.
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We have to redefine the notion of additivity for alignment with gap penalties. Then we
present an O(n?) algorithm for arbitrary gap penalties, and finally an O(n?) optimization for
affine gap penalties.

PROPOSITION 3.12 (ADDITIVITY WITH GAP PENALTY)
Given two alignments (a®, b°) with length r = |a®| = |b°| and (c®,d°). If

R
and
b # = v £,
then {(a®c®, b°d®) is also an alignment with
w(a®c®, b°d®) = w(a®,b°) + w(c®,d®).
THEOREM 3.13 (WATERMAN, SMITH AND BEYER [WSB76])

Letg : N — R be a gap penalty and w be cost functionon L x ¥. Leta = a; ...a, and
b=by...b, betwo words in £*. We define (D; ;) with1 <i<nandl < j <mby

DO,O = 07
Do; = 909,
D‘i,O = 9(2)7
Jwin {D: -k +9(k)},
D,"j = min Di—l,j—l +ur(ai,bj),

IISTII}Isli{Di—k,j +9(k)}}
Then Di,j = D(a1 .. .(li,bl . bJ)

PROOF This is similar to the proof for Theorem 3.9, using the case distinction

uo = "’Uai—k+1"'az‘ u° e SRR/ ¥ uo = B ¥ —_— EE R —

o _ o _ — ! .
v = "'bj - .. = v = ...bj v = .A.gbj_kﬂ...bj

with ¢ € {a;_x,—} and o' € {bj_x,—}, together with the modified Additivity
Proposition 3.12. a

This theorem furnishes a dynamic programming algorithm with runtime O(nm-(n+m)) =
O(n3) if n > m. In the case of affine gap penalty, one can even apply an algorithm that has
an O(n?) runtime. The main idea is to use three matrices instead of a single one. In the
two additional matrices (P; ;) and (Q; ;), one stores the minimal distance for all alignments
ending with a gap. That is, we define P;; (resp. Q; ;) to be the minimal distance for all
alignments (u°®,v°) for (a; ...a;, by ... b;) that are of the form

uo o ...ai res uo f— PR p—
1}0 — Fp— ‘p' /U° — b] "
Since we have affine gap penalties, it is easy to define the recursion equation for F; ; and Q; ;.

When considering P; ;, we have two possible cases for the optimal alignment (u°, v®) (where
optimal means optimal under the condition that a; is aligned with a gap):
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1. (u®,v°) extends an existing gap, i.e., (u°®, v°) is of the form

el J—
u” = e ai-1a4,

Uo = oo — —.

Then we have to add only the gap extension cost 3, i.e., we get P j = Pi_, j + 3.
2. (u®,v°) is creates a new gap, i.e.,

u® = -.—aqy or u® = --ai1a4
o - PR ; — ° o P - —_—
v = b; v = b; .

Then we have to add the cost for a gap of length 1,i.e., P, j = Pi—; ; + g(1).
This is basic idea applied in the following theorem.

THEOREM 3.14 (GOTOH [GOT82))
Let g(k) = a + k3 be an affine gap penalty, and letw : ¥ x ¥ — R be a cost function and
a,b € T*. Define the matrices (D; ), (Pi ;). and (Q; ;) recursively by

Dyop = 0,
Dl\U = 9(2)7
D1 -1 +w(a;,bj)
D;; = min P ; ,
Qij
withi,j > 1, where for1 <i <|al,1 <j <|b],
Py = oo,
s Di_y;+g(1)
P = mm{ Py, +4
and
Qio = o0,
. D;; | +g(1
Qi; = mln{ Q:j—:+z( ) }
Then

Di,j :D((Ll‘..(l,‘,bl...bj). (3.6)

PROOF This is by induction over pairs (i, j). As an additional claim, we show that

(u®,v®) alignmentof (@ ...a; by ... b)), } (3.7)

P = min< D(u®,v® .
t (u®,v%) with u|0u°\ = q; and “|Ol’°l = —

and

(u®,v°) alignment of (ay ...a;, by ...b;), 38
with “Tll°| = — and vlo"°| = bj : (3.8)

Qi = 111in{D(u°,p°)
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Assume we have proven the claims for all (k, 1) < (i, j). We first prove that

P, < min{D(u°,v°)

(u®,v®) alignment of (a; ...as,b1...0;),
with uf,.; = a;and v, = — ’

Let (u®,v®) with r = |u®| = |v°| be an alignment of (a; ...a;, by ...b;) such that

u
3.9)
v

30 30

= ay,

If i = 1, then there is only one possible alignment given condition (3.9), namely

—...—a;,
bl. . .bj—.

Hence,

D(u®,v°) = g(j) + g(1)
= Dy ; +¢(1)

=m1n{ DO’jJ{_g(l) }Z'—P],]‘.
[0.¢]

Otherwise, we know that (u'®,v') with «'° = u$...u2_; and ' = v{...v2_; is an

v
alignment of (a1 ...a;—1,b1 ...b;). If v2_; # —, then we get

D@®,v) "= D”,v"*) + D(ai,-)
= DE°,v"°)+g¢(1)
Ind. Hyp.
> Di_,; + g(1).
If v2_; = —, then D(u'®,v'®) > P,_;; by induction hypothesis. Let k > 0 be the length of
the final gap of v'°. Then
D(u®,v°) = D(u'°,v'°) — g(k) + g(k + 1)
= DWW W) —a—-kB+a+(k+1)3
D(u'*,v"°) + B,
Ind. Hyp.
2 Pi_1;+ 8.

It remains to be shown that there is an alignment (u®, v°) satisfying (3.9) such that
D(u°,v°) < Pi,j.

If P, ; = P,y j+03, then take an alignment (u'®,v'°) of ay ... a;_1,b; ... b; thatis optimal
under the condition that

<o
U =ai-,
V'’ = —.
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By induction hypothesis, this implies D(u'®,v'®) = P;_, ;. Hence,

D(u®,v°) = D(u°a;,v'"°—)
=D’ W)+ 8
=PFP_,;+3
= sz

If P;j = D;_\ ; + g(1), then take an optimal alignment (W, v'"Yofay...a;_y.by ... b;.
Then

D(Ulo,’u’o) = D,'_le
by induction hypothesis, and hence
D(u'°a;,v"°=) < Di_y j +g(1).

An analogous argument can be given for (3.8). The proof for the main claim (3.6) is given
by the same case distinction as in Theorem 3.9. a

Again we can achieve an optimal alignment using trace matrices and tracebacks. Since we
are using different matrices, we must use a different pointer set P, namely

P={", % " e 91, 1}

Thus, a traceback pointer points to a matrix and a cell in this matrix. Instead of taking one
trace matrix, we define three trace matrices (tr”?), (tr?), and (tr?), where

tr(?o = 0,
tr(l,)J = {D<—},
trpy = {1},
and
Vi,j>0:Px eup D;j =Dy -1 +w(a;bj).
QoEtr,{)j Di,j‘—'Qi,ja
"o € tr); D; ;=P

Pij=P_y;+3,
Pij=Di_y;+g(1);
Qij=PFij1+0,
D, ¢ tr% & Qij=D;j-1+g(1).

Vi,j>O:PT€trfj
P1oeur]
Vi j>0:% e try

t ¢t o0

A traceback is defined using intuitive functions on pairs of integers for the pointers
(PR Qe Yo P Qe P4 P4} where we use triples (A1, 4, j) to name matrix elements:

Vi>0,j>0: Me(i,j)=(M,i,j) for M € {Q, P},
Vi>0,>0: Me(i,j)=(M,i,j—1) for M € {D,Q},
Vi>0,j>0: MA3G,5)=(Mi-1,j) for M € {D, P},

Vi>0,j>0: PR(,j)=(D,i—-1,j-1).
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Anelement t € {P, Qe ,Po P Qe P4 P4V is atraceback for (a,b) if there is a
sequence of matrix cells

(Mo, 0, jo) - - - (Mye)5 2ty Jyey)
such that
1. (]\I|f|~z|l\~]|[|) = (Dﬂ !(ll,lbl) and (A]OﬂiOij) = (D7070):

2. forall 1 < k < |t

tr € e and ty(ig, ji) = (Mi—1,i—1,jk—1)-

ik Jk
The corresponding alignment is defined analogously to the case of alignment without gap
penalty.

3.3.2  Alignment with Tandem Duplication

In the previous alignment algorithms, we considered edit operations of the forms insertion,
deletion and substitution. Benson [Ben97] considered an additional operation, tandem
duplication, which generates tandem repeats. The corresponding evolutionary model is is
called the DSI model (duplications, substitutions and indels). The SI model (substitutions
and indels) is the underlying evolutionary model of standard alignment algorithms.

A tandem duplication is an operation that replaces a subsequence w’ in a sequence a by w*.
An example of the application of tandem duplication is

ACGAG| CCGTAGAA [TACCG
4

ACGAG| CCGTAGAA [ CCGTAGAA | CCGTAGAA | CCGTAGAA [TACCG .

Here, 3 copies of CCGTAGAA have been inserted. Benson considered the problem of
tandem repeats under two assumptions:

1. Tandem duplication occurs before the other types of operations.
2. There is no removal of copies of a tandem repeat region.

Both assumptions together imply that one could can generate the alignment using the usual
alignment algorithm if one knew the regions that have been duplicated.

Given the above assumptions, Benson [Ben97] showed that one can extend Gotoh’s
algorithm for affine gap penalty to incorporate also duplications. Let a and b be two sequences
that should be aligned under the DSI model (with affine gap penalties). Let g be an affine gap
penalty, d : N — R be an affine duplication cost (i.e., d(l) = v+ 4dl, where 7 is the duplication
initiation cost and § is the duplication extension cost) and w : ¥ — R be a cost function on
. Then we define matrices (D; ;), (P;,;) and (Q; ;) as follows. (P; ;) and (Q; ;) are defined
as in Theorem 3.14, and (D, ;) is defined by

Doo = 0,
Do; = g0j),
Dio = g(i),
D;_y -1+ w(a;,by)
D;; = min g’ljj ,

Dupli, j)
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where Dupli, j] is defined as follows. For a word w, let w,__, be the subsequence w, . . .ws
of w. Then

Dusfi | Dimrjes + min{d(k) + D(@i-rs1.is (bj-s41)..)")
le[L’J]_nrl,lsn Di_, ;- s+Imn{d(k ) + D((ai—rs1.. ) bier1 )}

Here, the notation (b(;_x41). ;)" is a shortcut for the word consisting of ! copies of
b(j—k+1)‘..j» i.e. the word

bij—k+1)...j ~~~b(j-k+luq

-

l copies
and similarly for (a;_p 1. ;). Thus, the remaining problem is to calculate

min{d(k) + D(a,t")}.

We consider only the problem of aligning a word a with an unknown number k of copies
of a word b, ignoring the duplication cost. The alignment distance with tandem repeat
Dwandem(q p) is defined by

Dtundem(a’ b) = min{D(a, bk) | k € N}

As we will see, the algorithm for calculating D'“"™(q b) can easily be extended to
incorporate the duplication cost, too. An alignment with tandem repeats is defined to be a
pair (a®,b,° ... b;°), where (a®,b;°...b°) is an alignment as usual with

e ¢°|x =a, and
o foralll <I<k:b°|x =b.

In the following, we consider only an alignment distance D with an affine gap penalty
g(l) = a + 13 and a cost function w. The principle idea is to consider all possible alignment
matrices (D¥ ;) for the usual alignment of a with b* for k € N. Each matrix is then divided
into k submatrices of size [a| x [b[, and all these sub-matrices are overlayed onto a single
matrix using minimization as shown in Figure 3.4.

This general idea is formulated as follows. Let (Di’fj) (Pk ), and (Q¥ ;) be the matrices for

alignment distance between a and b* as defined by Gotoh’s algorithm. The overlay matrices
(D), (P;j), and (Q; ;) of size |a| + 1 x |b] + 1 are defined by

Doo =0, Do;=g(j), Dio=gli),
Qio = 00, PO,j = 00,
and
D;,; :min{Df”bH_j | k,l e NAL < k},
Vi>0,j>0: Py =min{P¥, ;| kleNAL<k}, (3.10)
Qi = min{Q¥ ;p,; | k.1 € NAL < k}.
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k-times

Figure 3.4 Overlay matrix for tandem repeats

PROPOSITION 3.15
Foralll <i<lal,1<j<|bl,

JkeN:D;j=D(ay...a;,b";...b;).

PrROOF This follows directly from the definition of D, ;. n

Now we want to find a recursive definition for D; ; that can be used for a dynamic
programming algorithm similar to Gotoh’s algorithm. The main idea is again to simulate the
Gotoh’s algorithm on k copies of b using a single copy of b, except that we have a special
treatment in the case that the dynamic programming algorithm hits the boundary. This is
called the wraparound step (see Figure 3.5). The following two lemmas give a recurrence
equation for the matrices (D;;), ((;;) and (P;) for matrix elements that do not depend on
matrix elements beyond a boundary in Lemma 3.16, and for the matrix elements that depend
on matrix elements beyond a word boundary in Lemma 3.17.

LEMMA 3.16
Let (D; ;). (Qi,j), and (P; ;) be defined as in (3.10). Then

D,'_l,j_l +w(ai,bj)

Vi>0,j>ll D,-'jzmin P,"j s 3.1
Qi,j

Vi>0,j>0: :J—mm{ '”+g(1)}, (3.12)

I]_]

Vi>0,j>1: Qu—mm{ Q” :Iq )}. (3.13)
ij-
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Al
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Figure 3.5 Woraparound step. The first picture shows which matrix elements of (D;;) are evaluated
in Gotoh'’s algorithm to calculate a specific matrix element Dy, for the alignment a with three copies
of b. Note that we have ignored the (P;;) and (Q;) matrices. The second picture shows which matrix
elements are evaluated in the wraparound dynamic programming. All arrows in the first picture that cut
a boundary between two successive copies of b (indicated in gray) can be thought to be superimposed
onto one wraparound step (indicated in gray) in the second picture.
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PROOF By Theorem 3.14, we get

D, ; = min {D
i\j h ,<k{ 11b+j}
k Y
Di—lJlbIﬂ'*l + w(a;. b))
= min < min > -
kl<k pllel+
Qil|b|+j
min DLy iy} + wlainb)
= min {TIILI}{ 111b|+1}
n
,{TI‘LA{Q ol +5 1
. Dj_yj-1 +w(a;, b))
(j=1>0) .
= min< P
Qi
The proofs for the other matrices are analogous. ]

Now we have to consider the special case D;; and Q; ;. For example, we know that in the
calculation of D; 1, the left or diagonal step either marks the beginning of the alignment (i.e.,
takes into account the cell D; o or D;_; ), or it is the start of a new tandem repeat. In the
latter, the costs for the previous alignment are stored in D; 5| or D;_} j;.

LEMMA 3.17
Let (D

Vi>0:

Vi>0:

i,j)s (Qi ;) and (P; ;) be defined as in (3.10). Then

(D10 + w(a;, bj)
D;, = min < D;_y p) + wlai, b)) (wraparound) ’ (3.14)
Py
\ Qi‘l
[ Dio+g(1)
~_ .} Dip+g(1)  (wraparound)
Qi1 = min Qio+48 (3.15)
[ Qijp +8 (wraparound)
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PROOF By Theorem 3.14, we get again
Diy = krf}i&{Df,th}
= g ymn Piip 1
Qi,l|b|+1

Dk
wLI}C{Di—x,l|b|} + w(a;, b;)

. ; k
= min Ig}g}c{Pz‘,ublﬂ}
: k
min {QF 41}
. k . .
ﬂ}g}c{Di—lJlbl} + w(a;, bj)
= ming p,
Qi
The problem here is that there is no definition for AHI]iri{D:F"l 161} 11 (3.10). But we can write
<k :

the following:

min{ Dk, o}

. k . . . _ . R .
£111<nk{D[;1’”b'} + w(a;,b;) = min k ?ii&k{Df—l,llb\} + w(ai, b;)
. mkin{Dz"C—l,o}
= min + w(a;, bj).

. k
min A
k‘0§l<k—1{D’_1‘”b|Hb|}

By Theorem 3.14, we have D¥ | o = g(i — 1) = D;_1 ¢, and therefore
m’}n{Df;l,O} =Di_0.

Furthermore, we know that given k < k' € N, then forall | < k and j < |b| we have

'

k _ k
Dy asj45 = Dizv o

This implies
: k _ : k-1 -n
kvog[]giiil{Di—l,l(b|+1b[} = kilvggllikil{Di——l,[|bt+|b[} =Di_1 -
Hence,
min{ D¥_

min {Df_l‘,w} + w(a;, b)) = min k {010 + w(a;, b)),

kd<k i—1.]
which proves the claim. The proof for the (Q);, ;) matrix is analogous. [ ]

The last two lemmas give a recursion equation that is satisfied by ((D; ), (Fi ;) (Qi )
defined by (3.10). The remaining part is to show that every triple ((D; ;). (P ). (Qi )
satisfying the recursion equation also satisfies (3.10).

— ~—
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LEMMA 3.18

Let a, b be given such that |b| > 1. Furthermore, let the gap penalty be g(k) = a + 8k such
that « > 0 and 8 > 0. Then every triple ((D;;), (P;;),(Q;,;)) of matrices that satisfies
(3.11)~(3.15) also satisfies (3.10).

PROOF Let (D, ;), (P;;), and (Q; ;) satisfy (3.11)~(3.15). We have to show that for all
>0,
M; j = min{M} ap+j | Kl €ENAL< K}
for M € {D, P,@}. Thus, we have to show that for all j > 0,
Vk, L€ N: M < Ml (3.16)
and
3kl € N: Mij > Mbyy, ;. (3.17)

o For the first direction, assume that (3.16) does not hold. Let (k*,1*,i*, j*) with
1 < j* < |b| be a minimal quadruple (under the lexicographic ordering) such that
(3.16) is not satisfied, i.e., such that

for some M € {D, P,Q}. Note that [* < k*.

We derive a contradiction for M = Q. The contradiction for the other matrices can
be proven analogously. Since the matrices (D} ;), (PF;), and (QF ;) satisfy Gotoh’s
recursion equations (Theorem 3.14), we get

K
Qf.‘1~|b|+j. = min{ D' A el+57~ 1 +9(1) }

z‘ A* b+ —1 + ﬂ
We have two cases:
1. 7 =1.1fl =0, then

k* k*
Dj. o.1p1+0 = Dis0 and Q3 o.ppj40 = Qir0
by definition of the matrices. If I > 1, then we get again by minimality of
(k*,1*,i*,7*) that

.

k >1 k*
Dy eipja1-1 = Die e —1ypor+i5 2 Dis o)

and
. I>1
QF i1t = QK e iypiain) = Qs jol-
Hence,
Do+ g(1)
. | D+ (1)
k Jol T 9
Qi 1+ (p|4j- = Min Q;,o +3
Qie 1o + 8
= Q- 1, (by (3.15))

which is a contradiction.
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2. j > 1. This is similar to the above case.
e For the other direction, assume that (3.17) is not satisfied. Let (i*, j*) be the minimal
quadruple such that
Vk € NI <k: Mo jo < ME 40 (3.18)
If Al = P, then by the recursion equation (3.12) we get
P,'o.j- = Dio,[d‘ + _(](1) (resp. I)i-‘j- =L je + ﬂ).
By the minimality of (i®, j*), we get that there are k, [ such that
: : k
Die—ijo 2 Doy ypppaje (08P Pioijo 2 PRy e o).
Since (D} ) (resp. (PF;)) satisfy Gotoh's recursion equation, this gives us Pje jo >
Pzﬁ‘llblﬂ' in both cases, and therefore a contradiction.
A similar argument can be applied if M = D or M = @, and j* # 1.

The remaining case is M = D or M = (), and j* = 1. The main idea is to apply a
similar argument by generating a traceback in the row i* starting at A+ ;.. The cells
are connected via the recursion equation. If the traceback went back to the previous
row, then the same traceback could be done in some ((Df ), (P¥;), (Q¥ ;)), which
would yield a direct contradiction to (3.18). If this is not the case, then we will show
that the recursion equations are not satisfied.

For the formal definition, let (M (1), j(1)) = (M, j*). and let the tuple
(M(r+1),j(r+1))
be generated from (M (), j(r)) as follows:

( (P,‘](l)) lt A[(T) = D and Di‘,j(r') = R',j(l')
else (Q.j(r)) if M(r) = Dand Do j,) = Qo jir
else (D,j(r)—1) ifM(r)=Q

and Qe j(r) = Dis j(ry—1 +9(1)
else (Q.j(r)-1) M(r)=@Q

(M(r+1),j(r+1)) = and Q;e jir) = Qje j(ry-1 + 8
else (D, [b]) itj(r) =1, M(r) = Q
and Qe 1 = Dy 1y + 9(1)
else  (Q,|b]) ifj(r)=1, M@ =Q

and (c)i’.l = Qi'-lb‘ + 3

| else undefined.

We have the following cases:

1. The traceback is finite. Let r be the maximal number such that (M (r),i(r)) is
defined, and let M = M (r). By definition of the tuples, there must be a matrix
M’ and a constant ¢ € R such that either j(r) # 1 and

A-[i‘,j(r) = Ali,‘—l,j(r) +c or A[i',j(l') = AIz(‘—l,j(r)~l + ¢,
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orj(r) = land
A[j"l = AI;‘—I.[I)] + c.

In any case, we know by the minimality of (i®, j*) that there are k, [ such that
Mie_y jiry 2 ML Abl+i(r)
resp. AJ!"—I,J(T —1 > A[. ~1,0[b|+j(r
resp. A[i’—l.\bl Z A[‘i'—l.(l—l)‘b‘+ib\'

By the recursion equation for ((D; ;). (P ;). (Qi,;)) and for ((Df’_j). (

we immediately get

A[l' ; > ]\Io llbl+](7‘

Proceeding this way, one gets that there are k,{ such that Al jo > ’\[

which is a contradiction.

2. The traceback is infinite. Then the traceback must be cyclic, i.e., there are r < 1’

such that

M(r)y=M(") and  j(r)=j(r').

By definition of the traceback and the conditions |b] > 1, @ > 0 and 3 > 0, there

must be a positive value v € R with v > 0 such that

AJ(")]",]‘(‘I‘) = A[( )10 (r') + v,
which is a contradiction to (M (r), j(r)) = (M ('), j(r'")).
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Pr).(QF))).

The previous does not directly lead to a dynamic programming (DP) algorithm. The
problem is with the (Q; ;) matrix, where we need to know Q; |, before we can define
Q1. Hence, we have to modify the DP algorithm to work into two passes (which is
shown in Algorithm 3.1). An application example, comparing the matrix yielded by the
standard Needleman—Wunsch algorithm [NW70] applied to two copies of b, and the matrix as

generated by the Wraparound Dynamic Programming, is shown in Figure 3.6.

In the following, we want to use D(;’ to indicate the values of D, ; after the pass m, where
m = 1orm = 2. We can show that if the last row of the matrices in the first and second passes
agree, then we have found the final matrices. If this is not true, then we need additional passes.

LEMMA 3.19

Ifforalll <i < |al
30 <j < [bo| D) = D),

30 <j<p| P =P

1,7
30 <j< bl Q) =QF

2,07
then

(m) _
D" = Dy.

(3.19)
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Algorithm 3.1 Wraparound Dynamic Programming

Initialization:

{ for i=0 to |a| {
Dio = g(z)
Qo = 0
}
for j=0 to |b {
Do = g(J)
Pp,;, = ™
}
}
Pass 1: {

for i=1 to |aj
for =1 to |b {

. D;_,; + 1
P, = min { Pi-xl.j + ﬁg( ) }
S [ Dij—1 + g(1)
Q., = min { P, + 3

Di_1j-1 + w(ai,b;)

D _ min if j>1 then x else D;_;, + w(ai,b;) endif
. -
i

Qi
}
}

Pass 2: {
for i =1 to |a]
for j=1 to |y {
P, = min { llz::;: _:— ’g(l) }
Dij-1 + g(1)

Q. = min ;f}ffi t;en oc else D, + ¢(1) endif
if j>1 then oo else P, + 3 endif
D 1;-1 + w(aib;)
if j>1 then oo else D;_,p + w(a; b;) endif
P
Qi

D:.; = min
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A c c G A c c G

000] 100| 200 300 400| 500] 600] 700| 800

100{ ~000] 100] 200 300] 400] s00] 00| 700

200 100] 1oo] 200] 300] a00] so0] eo0]| 700

300 200] roo] 100] 200 300] 400] s00] 600

400] 300| 200] 200] 100] 200] 300] 400] 500
—

5.00 4.00 3.00 3.004 200 2.00 3.00 4.00 4.00
6.00 5.00 4.00 4.00 3.00, 3.00 3.00 4.00 4.00
7.00 6.00 5.00 5.00 4.00 3.00,] 4.00 4.00 5.00
8.00 7.00 6.00 5.00 5.00 4.00 3.00, 4.00 5.00
9.00 8.00 7.00 6.00 6.00 5.00 4.00 4.00 ] 5.00

10.00 9.00 8.00 7.00 6.00 6.00 5.00 5.00 4.00

11.00] 1000| 900| 800 700| 700 600 600| 500

sS|Qf4Hla|>|o|a(a|jn|4|»

A c c G
000l 100 200] 300] 400
Al 100] Togo[ roo] 200] 300
1] 200 ool roo| 200] 300
cl300] 200 Trge| 100 200
Gl a0l 200] 200 200] 100
G| so0] 200] 300 300l 200
-
G| 600 300| 300| 400 3.001
Al 700 36 T00] 400 400
c| soo| 400| ~300] 400] 500
T| 900 s500| 400| 4 5.00
Gl | soo| so0] s00] 400
T
T[1100| 500 600] 600] 500
All Lo = AT CGGGACTGT
rgnment: gy = A—C—CGACCG-

Figure 3.6 Comparison of Needleman-Wunsch and Wraparound Needleman—Wunsch. The cost
is 1 for substitutions, and 1 for indels. The task is to find the minimal distance between a =
ATCGGGACTGT and an unknown number of copies of b = ACCG. The optimum is found by
two copies. The figure shows the distance matrix for Needleman—-Wunsch applied to a and bb, and the
distance matrix for Wraparound Needleman—Wunsch applied to a and b. One can see that the traceback
of the first matrix is just folded into the second matrix. Note that the number of wraparound steps in the
traceback determines the number of copies of b used.
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PROOF After pass 2, we know that (ij)) satisfies (3.11)-(3.13). If (3.19) holds, then
especially

D11|:Jl = D1)|3)|’
P(l) _ P(z)

By the definition of the algorithm, this implies

' Dﬁ.lo) +g(1) \
) DY 461 wraparound
Q) = min{ i g(1)  (wraparound)
. Qio + 53

Y

Dﬁzo) + (1)
D( lbl + g(1) (wraparound)

QI 0 +
Q( s 3 (wraparound)

= min

\

This gi»es (3.15). and, with a similar argument, we also get (3.14). The same can be done for
the (D )) matrix. By Lemma 3.18, this proves the claim. |

The cost for duplications can easily be incorporated by adding the duplication extension
cost every time a wraparound step is performed.

3.3.3  Similarity Methods

Leta =a;...a,and b = by ...b,, be words over a finite alphabet . Rather than minimizing
the distance between a, b, we maximize the similarity between a, b. Instead of a cost function
w(.r,y), we consider a similarity function s(:x, y), where generally s(x, y) is positive if x = y,
and negative if x # y (the score for gap s(x,—) and $(—,y) may be different than the
score s(w, y) of a mismatch). Transition is the substitution of a purine (adenine or guanine)
for a purine, or a pyrimidine (cytosine or thymine) for a pyrimidine. Transversion is the
substitution of a purine for a pyrimidine or vice versa. Such information can be incorporated
into the similarity function s. The best scoring global alignment between a. b (without special
treatment of gap, i.e. without context sensitivity) must have score

S((l,b) =

L
max {Z s(aj,b})

over all a*, b*, provided that for no ¢ are both a} b} equal to —’} .

i=1

Here, L < n + m, and a*,b* are sequences in ¥ U {—}, where — represents a gap (— in
the a sequence represents insertion into the b sequence, while — in the b sequence represents
deletion from the a sequence; this is clear if one imagines a sequence of edit operations which
produce b from a).
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A dynamic algorithm to compute S(a, b) goes as follows. Let
S,',j = S((l],. .. ,(Ii,bl,. .. ,bj).

Letting d be the gap penalty, we consider the linear gap function g(n) = d(n) Then

So0 = 0,
So; = Jéo,
Sip = 16,
Si; = max{S;—1 -1+ s{a;,b;),Si—1; + 9,5 -1 + 4}

The similarity score computation takes time O(nm), and either defining pointers or using
tracebacks produces the sequence alignment with this score.

T. Smith and M. Waterman [SW81] modified the previous algorithm to produce local
alignments. Define the local similarity measure

H{a,b) = max{S(ax...a;,br...b;) |1 <k <i<n1<{<m}.

In computing the similarity score for local alignments, it is necessary that the expected
local similarity score between random sequences is negative (this condition is guaranteed
for instance by the PAM matrices). Otherwise, a local alignment could always be extended to
a longer local alignment and one could expect a higher score. This condition is considered in
detail Durbin er al. [DEKMB98]. To determine H (a, b), compute

H;;j = max{0,S(ag...a;,b¢...0;) | 1 <k <i,1 <0<}

by dynamic programming, where

Hyo = 0,
Hy; = 0,
Hio = O,
H;; = max{0,H;_y j_1 +s(a;,b;),H;_1;+ 0, H;j_1+3}.

Then the score of the best scoring subsequence of a aligned with subsequence of b is

H(a,b) =max{H;;|1<i<n,1<j<m}.

3.4 Multiple Sequence Alignment

The problem of multiple sequence alignment is, given k sequences of length at most n, to
determine an optimal alignment of all sequences. Suitably formulated and with k, n arbitrary,
this problem is known to be NP-complete. There are many approaches towards multiple
sequence alignment, of which we mention only a few.

For the formal description of multiple sequence alignment, let ¥ be the alphabet, and
¥’ = ¥U{-} be ¥ extended by the gap character —. An alignment for k sequences S, ... Sj
is given by a character matrix

A= (Aijhi<i<ki<j<k
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over the alphabet ' with the property that S; can be obtained from A4;; ... 4;) by removing
the gaps. Thus, the matrix A represents the alignment of the k sequences Sy,..., Sk in K
columns.

The cost function for multiple sequence alignment is a straightforward extension of the cost
function for pairwise sequence alignment. In both cases, the costs are given to the individual
columns of the alignment. Thus, a cost function for aligning sequences S| ... S is a function
w : £¥ — R The cost D(A) of an alignment A with K columns is given by

DA) = Y w(dy,...,Ax)-

1<j<K

Different multiple sequence alignment problems can be formulated by specifying how the
function w(cy, . .. , ¢k ) is composed.

3.4.1 Dynamic Programming

In a straightforward manner, it is possible to extend the dynamic programming techniques
from pairwise alignment to the alignment of k& sequences. For instance, when trying to align
three sequences, a; ...a,, by ...b,, ¢ ...c¢, drawn from the finite alphabet ¥, define

( Di_1j_14-1 +w(aibjcx) )
Dz’,j—l,k-—l +w(—,bj,ck)
Di_y k-1 +wlai, —,ck)

D; .k = min < D‘i‘1'j_1,k+w(a,‘,bj,—) R

Di_yjx +w(a;,—,—)

Di.j—l,k + zu(—,bj, —)

\ Dijk-1+w(—, —, cx)

where w(r, y, z) is the cost of comparing x,y,z € (X U {—1}). This situation corresponds
to a linear gap function, and one could define w(x,y, z) to be the sum of pairwise costs
w(x,y) + w(x, z) + w(y, z) or alternatively define a new measure, such as

0 ife=y=z,
wix,y,z) = ¢ 1 if 2 of the 3 symbols are the same, (3.20)
2 if all 3 symbols are distinct.

The determination of D, ,,.¢ then requires O(nmf) = O(n?) time, if n > m, ¢. Similarly,
multiple alignment for k sequences by dynamic programming would take n* time, where n is
the maximum sequence length, when using a linear gap function.

3.4.2 Gibbs Sampler

In [LAB*93], an interesting application of the method of Gibbs sampler was developed
for local multiple sequence alignment. The generic idea concerns alignment without gaps,
although a modification of the method allows for gaps.

Suppose that we have m sequences, of possibly differing lengths. Let w be a fixed window
size. After convergence, Algorithm 3.2 determines a local sequence alignment of all windows.
In Algorithm 3.2, various window sizes are tried, and the optimal scoring local alignment is
output.
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| I—
L 1

Figure 3.7 Multiple sequence alignment using Gibbs sampler.

Algorithm 3.2 Lawrence, Altschul, Boguski,Liu, Neuwald, Wootton [LAB193]

1. Identify random size w segments, or windows, from m amino acid sequences. (See
Figure 3.7 for an illustration.)

2. Choose one of the m proteins at random and temporarily call it P, wherery.... .1,
is its amino acid sequence.

3. Define a 20 x w frequency matrix ( where

Ny
m-—1

Qr.j =

and N, ; is the number of occurrences of residue r at position j among the
m — 1 remaining proteins. (To avoid a probability of 0 in the case that N, ; = 0,
pseudocounts are added — see [LAB 193] for details.)

4. Fori = 1to|P|— w + 1 compute

w
Di = H Q‘!‘(.H'.ja
i

which is the probability that the subsequence of P of size w beginning at position i

is generated by ().
5. Choose the starting position of the window in P randomly according to probability
pi. In other words, define cumulative probabilities g; by

g = Oa
@i = P,
7% = Qi-1+pi= ij

J<i

for1 < i < n — w + 1. Generate random z € (0, 1), determine g, the smallest
1 <7 < n —wfor which z < g;, and set the new starting position for the window
in P at position ig.

6. If convergence has occurred, then stop, else return to Step 2.
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3.4.3  Maximum-Weight Trace

Kececioglu [Kec91, Kec93] introduced a special formulization of multiple sequence
alignment, the complete maximum-weight trace (CMWT) formalization. The CMWT
formalization handles a subclass of multiple sequence alignment problems, which can
roughly be described as multiple sequence alignment problems that merges pairwise sequence
alignments. The most prominent instance of this subclass is the sum-of-pairs multiple
sequence alignment problem. which was introduced by Carrillo and Lipman |CL88). We
will first define the sum-of-pairs multiple sequence alignment problem. Later, we define the
CMWT.

In the sum-of-pairs multiple sequence alignment problem with linear gap penalties, an
alignment for n sequences S\, ... .S, is given as usual by a character matrix

A= (Aij)ici<na<j<k

over the alphabet ¥’ with the property that S; can be obtained from 4;; ... 4;x by removing
the gaps. The cost function is composed of pairwise cost functions w, : £’ x £’ — R. The
cost D(4) of an alignment A is given by

D(A) = z Z ‘ll'p(:-l,'j,ﬁi,'rj).

i<i' 1<j<K

Of course, this is equivalentto D(4) = 37, c o i 2, wp(Aij, Ay ;). and is hence a special
case of the general multiple sequence alignment problem, where the cost for a column is given
by w(ay, ... ap) = > wp(Asy, Apj).

The sum-of-pairs problem (with linear gap penalties) is one of the motivations for the
CMWT problem. In this problem, the letters of the strings S; = s;1 ...s;,, are considered
to be the set of vertices V' = 17 W ... w 13,7 of a complete n-partite graph G = (V, E)
(i.e.. G satisfies that for every v € Vj and v’ € 1V}, we have e = (v,v') € E if and only if
i # j). G is called the complete alignment graph for the sequences Sy, ... ,S,,. It represents
all possible multiple sequence alignments for the sequences S, ..., S,,. An alignment graph
G is a subgraph of the complete alignment graph. Alignment graphs can be used to restrict the
search for a multiple sequence alignment to a subset of all possible alignments. For example,
let S; be AACG and S, be AGG. Then the complete alignment graph for AACG and AGG is the
2-partite graph

With every edge ¢ € E, there is a positive weight w(e) associated. An alignment A for
the sequences S).... .S, realizes an edge ¢ = (s;j,sy#j) € E of an alignment graph
G = (1, E) for the sequences S, ... , S, if the jth character of S; and the j'th character
of S, are aligned in 4. For example, consider the alignment

A A C G
A - G G

5 Where W is the disjoint union
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Then this alignment realizes three edges, indicated by straight lines:

Given an alignment A, the set of all edges realized by A is called the trace of A. AsetT C E
of edges is called a rrace if it is the trace of some alignment A. Given the weight function w,
the weight of atrace T'is ), ., w(e).

PROBLEM 3.20 ((COMPLETE) MAXIMUM-WEIGHT TRACE) LetSy,... ,S, be sequences,
let G = (V, E) be the complete alignment graph for S;, ... ,S,, and let w be a weight func-
tion. The complete maximum-weight trace problem is to find a trace T C E that has maximal
weight (under w). The maximum-weight trace problem is defined analogously for an align-
ment graph G = (V, E) for Sy, ..., S,.

A remaining problem is that not any subset of edges is a trace (i.c., not every subset of
E corresponds to a real alignment). Consider again the two sequences AACG and AGG, and
constder the following subset of edges indicated by straight lines:

The problem are the two crossing edges indicated in gray above.

In order to characterize set of edges realized by alignments, we must define extended
alignment graphs. We need some definitions. A binary relation < is a partial order if it is
(1) reflexive (i.e., a < a), (2) antisymmetric (i.e.,a < band b < a implies a = b), and (3)
transitive (i.e.,a < band b < cimplies a < ¢). A binary relation < is a strict partial order if
itis (1) irreflexive (i.e., a £ a), and (2) transitive (i.e.,a < band b < ¢ implies a < ¢).

Given sequences Sp,...,S, with S; = s;1 ... 8;y,, one defines the extended alignment
graph G = (V,E, <) for S),..., S, to be a triple such that (V, E) is an alignment graph for
S1,...,Sn, and < is defined by

<= {(si5,85j+1) | 1 <i <n A1 <G <nl
With <*, we denote the transitive closure® of <, i.e.,
<"={(sij,8i0) |1 <i<nA1<j<j <ni}

Note that <* is a strict partial order of 1"

Using the extended alignment graph, one can characterize traces. A connected component
of a graph G = (V, E) is a C-maximal set V' C V" such that for all vertices v, v’ € V" there
is a path of edges in E connecting v and v’. For any two subsets X, Y C 1", we define

XaYifandonlyif Ive X I eV : v=<v.

6 Given a binary relation <, the transitive closure of < is a binary relation < such that = <* 2’ if there is
asequence of elements z = 1 ..., = 2’ withz| < T2 < ... <ZTp_1 < Tk
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We define <™ to be the transitive closure of <. Hence, X <* Y if and only if 30 € X3¢’ € Y :
v <* v'. For the sequences AACG and AGG the extended complete alignment graph is

where we have indicated the edges for < by arrows.

THEOREM 3.21 (KECECIOGLU)

Let Sy....,S, be sequences, and let G = (V, E, <) be the extended alignment graph for
Si,....S,. Then a subset T C FE is a trace if and only if <* is a strict partial order on the
connected components of G' = (V. T).

PROOF For the first direction, let T be the trace of an alignment 4 with K columns. By the
definition of an alignment, we know that (s;j,sx) € T if and only the jth position of S,
and the Ilth position of Sy are aligned in one column. Hence, any connected component of
G' = (1, T) consists of the vertices that are aligned in one column, ie., V' = X W... ¥ Xy,
where X, is the connected component of G’ = (V, T') corresponding to the rth column of the
alignment 4. We have to show that X', «* X, implies r < s, since then <* must be a strict
partial orderon Xy, ..., Xk . If X, <* X, then there is a s;; in .X, such that thereisa j' > j
with s;;+ in X, which implies by the definition of an alignment that column s must appear
after column r.

For the second direction, let T be a subset of E such that «* is a strict partial order on
the connected components of G’ = (V,T). Let <, be any strict total order of the connected
components of G’ = (V, T) extending <* (which must exist since <* is a strict partial order).

Let Xy,..., Xk be an enumeration of the connected components of G' = (V, T') such that
r < simplies X, <%, X,. Then we define the alignment A of Sy,... .S, in A rows by
{S,’[ if s € .\’j,
Aij = .
— otherwise.

We have to show that A4 is an alignment. First, we have to show that A is properly defined; i.e.,
we have to show that s;; € .X; implies that there is no other sy such that s;» € X ;. Suppose
that there were s € X and s;r € X; with # I’. Without loss of generality, we can assume
that { < I', which implies that s;; <* sy and therefore X; <* X, which is a contradiction
to the assumption that <* is a strict partial order. Second, we have to show that we achieve
the string S; if we ignore the gap symbol — in the string A;; ... A;x. Let w be the string that
results from ignoring the gap symbol — in A;; ... A;k. Since every s;; must occur in one of
the X, we know the word w is composed of some permutation of the symbols in S;. Hence,
we have to show that the permutation is the identity, i.e., we have to show that the symbols
occur in correct order.

So assume that there is a sy such that there is some s;;, with [ < k that appears earlier
in the string 4;; ... 4,5 than s;. By the definition of 4, we know that there are X, and X,
such that s;; € X, s; € X, and r < s. This implies X, <* X. On the other hand, [ < k
implies s;; <* s;; and therefore X, <* X,.. But X, <* X, and X, <* X, is contradictory to
the assumption that < is a strict partial order. ]
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In [RLM*97, KLM199], the complete maximum weight trace problem was generalized
and coded in the framework of integer linear programming.

3.4.4 Hidden Markov Models

In a later chapter, we will describe hidden Markov models (HMM), a widely used machine
learning technique, based on solid mathematical foundations of maximum likelihood
and expectation maximization. In (BCHM94, KBM194, EMD95, Edd95] HMMs have
been described for multiple sequence alignment; moreover HMM multiple sequence
alignment software has been independently developed by various groups, including P.
Baldi, Y. Chauvin and V. Mittal-Henkle (HMMpro at www.netid.com), S. Eddy
(HMMER www.genetics.wustl.edu/ eddy), and R. Hughey, K. Karplus et al.
(SAM www.cse.ucsc.edu/research/compbio/sam.html).

The underlying idea is that by viewing the sequences to be aligned as a training set of
observations, which deviate from an ancestor sequence by a stochastic process, a stochastic
model is computed, which is most likely to have generated the sequences in the training set.
This approach leads to an algorithm for multiple sequence alignment that scales linearly in
the number of sequences, rather than exponentially; however, determining the alignment with
global maximum likelihood, rather than local maximum, can require exponential time.

3.4.5 Steiner Sequences

In [KLT97], a problem somewhat related to multiple sequence alignment is considered. In
the laboratory technique of single-molecule DNA sequencing, single-stranded DNA is cut,
a single base at a time. This base then flows down a microscopic tube at high speed past
an optical sensor, which detects the type of base. This technique is error-prone, due to
sputtering, especially at the beginning and end of the DNA molecule being cut. By repeating
the process many times, we produce a collection of N erroneous copies of an original DNA
sequence si, . .., Sy, which is to be determined. A heuristic to determine sy, ... , s, is given
in Algorithm 3.3.
The algorithm’s runtime is of order
N N s N N

=nd+ ot ond e+

3 3
3 32 33 W Nn® = Q(]V‘Il )

nd <
Algorithm 3.3 can be appropriately modified to produce a general multiple sequence
alignment, by constructing a tree with branching factor 3 and depth log; N, where the N
sequences to be aligned are at the leaves, and intermediate nodes are Steiner sequences of
the children. From the tree, it is clear how to produce the multiple sequence alignment. The
resulting multiple sequence alignment could, however, have the following undesired property.
Suppose that sy, ... , sy are the IV sequences to be aligned, and that s; and s; are identical (or
almost identical), where 1 < ¢ € j < N. Then it could happen, because of grouping together
of every 3 adjacent sequences in producing the intermediate Steiner sequences, that s; and
s; are misaligned in the resulting multiple sequence alignment. A heuristic remedy might
be to first apply pairwise sequence alignment in order to sort the sequences, thus producing
Ss(1)s-- - » Sg(n) for some permutation o € Sy, with the property that adjacent sequences in
the sorted order are similar to each other.

How well does the heuristic perform in determining the original sequence sy, ... ,s, from
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Algorithm 3.3 Kececioglu, Li, Tromp [KLT97)

1. Given N erroneous copies of an original DNA sequence to be determined, let

M=N.

Partition the M sequences into A /3 groups of three sequences.

3. Apply dynamic programming with cost function w(x,y,z) given in (3.20) to
determine an optimal alignment of the three sequences U, 1, W in each group. From
this alignment, define the consensus sequence S obtained by taking the majority
symbol in each column, and then removing all occurrences of ‘—’ (i.¢., it can happen
that ‘=" is the majority symbol of a column, in which case this is removed from
S). This consensus sequence S is a Steiner sequence for U, 1, W, meaning that

S e {4.C,G, T} satisfies

!\J

D(S,U) +D(S, V) +D(S, W) =
min {D(T,U)+ D(T,V)+ D(T.W): T € {4,C,G,T}"}.

4. The previous step yields M /3 Steiner sequences. If M = 3, then stop and output
the resulting sequence. Else let A/ = M /3, and return to Step 2.

erroneous copies produced by single-molecule DNA sequencing, and how many erroneous
copies are required to determine sy, . .. , s, with high probability? Kececioglu, Li and Tromp
answer these questions, subject to the hypotheses that

1. the original DNA sequence s;,...,s, is a random sequence (technically
Kolmogorov random, or incompressible, essentially related to maximal entropy),
and

2. insertion, deletion and substitution are equally likely.

The former assumption is biologically unrealistic, especially for DNA sequences of interest
(genes, promoter sequences, etc.), while the latter assumption seems reasonable, given the
physical device used for single-molecule DNA sequencing. Under these assumptions, it is
shown in [KLT97] that Step 3 of Algorithm 3.3 reduces an original error rate of € to almost
(2.

It suftices to reduce the error rate to less than 1/n, since the expected number of errors
in a sequence of length n will be less than n - 1/n = 1, and the original sequence will

have been determined. To this end, let ¢ be such that ¢ = 1/¢, and note that the least k

such that € = —';; < 1/nis [log, log, n — log, log, ¢] = Oflog, log, n). Assuming

that the resulting M /3 Steiner sequences in each pass of the algorithm are random (this
has no analytic justification), Kececioglu, Li, and Tromp then argue that it suffices to take
N = 3k = 3losz108217 — (]og, n)lo823 log,1 5849 ) which is a small number of erroneous
copies.

3.5 Genomic Rearrangements

Using dynamic programming methods for sequence alignment, we have shown how genetic
distance between two species can be measured using sequence alignment (global or local,
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using distance or similarity methods) of two homologous DNA or amino acid sequences.
Chromosomal rearrangement events are much rarer than pointwise mutations, and hence can
possibly be used to determine similarity between vastly different organisms.

1. Intra-chromosomal events: inversion of a contiguous segment of genes (from
5 — 3 103 — 5, or vice versa); duplication, possibly caused by transposons,
leading to pseudogene families such as ALU; transposition, where a portion of the
chromosome is broken and placed elsewhere in the same chromosome.

2. Inter-chromosomal events: reciprocal translocation, where the end segments (not
including the centromere) of two chromosomes break off and exchange positions
(this can happen during crossover); chromosomal duplication, where the number of
chromosomes in the genome is doubled (this happened in the evolution of a wild
grass into wheat); fission, where one chromosome is broken into two; fusion, where
two chromosomes fuse into one.

An even higher level of abstraction was considered by Ferretti, Nadeau, and Sankoff
[FNS96], in picturing a chromosome as an unordered set of genes. Define a synteny as a
partition of the genome into distinct sets of genes, or chromosomes. Two genes are said to
be syntenic if they both lie on the same chromosome. From physical genome maps, current
knowledge about the placement of genes on chromosomes is far greater than more detailed
knowledge about the order of genes, their orientation, etc.; hence the algorithmic study of
synteny seems particularly appropriate.

If we consider that synteny sets (chromosomes, as unordered sets of genes) can be
transformed only by the operations of fission, fusion, and reciprocal translocation, then the
following questions immediately come to mind.

o Given synteny sets of current organisms, can one construct likely synteny sets of
ancestral organisms?

e How many chromosomes did ancestral species have?

e Which genes were on which chromosomes of ancestral species?

¢ Do phylogenetic trees constructed from comparing synteny sets of different species
resemble those constructed from sequence alignment data?

In order to answer such questions, we must compute the syntenic distance between two
species, i.e., the minimal number of fission, fusion and reciprocal translocation events
necessary to transform one synteny set into another.

For example, suppose the genome G consists of genes a, b, c,d, e, f, g, h and is partitioned
into two chromosomes A4, B, where A = {a,b,c,d} and B = {e, f,g,h}. Suppose
the genome # consists of the same genes a,b,c,d, e, f,g, h and is partitioned into three
chromosomes C, D, E, where C = {a,b}, D = {c,e, f},and E = {d, g, h}. Then a fission
of Ainto {a, b} and {c, d}, followed by a translocation of {c, d} and {e, f, g, h} into {c, e, f},
and {d, g, h} transforms genome G into genome H. See Figure 3.8 for an illustration.

As another example, suppose the genome G consists of genes a,b,c¢,p,q,r,x,y and is
partitioned into three chromosomes C1, Cs, Cs, where Cy = {z,y}, Co = {p,q,r}, and
Cs = {a,b,c}. Suppose the genome H consists of (different) genes a,b,p,q,7,z,y,2
and is partitioned into two chromosomes D;,Ds, where Dy = {p,q,z} and D, =
{a,b,7,y,2}. The common genes between genomes G and H are a,b,p,q,r,z,y, and
the syntenic distance between G and H is 2, since a translocation of {p,q,z}, {a,b,r,y}
produces {z,y}, {a,b,p,q,r}, and a fission of {a, b, p,q,7} produces {p,q,r},{a,b}. thus
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abcd efgh

ab| |cd efgh

ab||cef dgh

Figure 3.8 Fission and translocation of synteny sets.

transforming the genome # into G. Note that we only consider those genes common to both
genomes.

It is known that the problem of determining syntenic distance is NP-complete. Certain
other measures of chromosomal rearrangement distance have been shown to be NP-complete,
where, however, a variant of the problem can sometimes be shown to be polynomial-time-
computable. In some cases, using heuristics, branch-and-bound, or other means, efficient
algorithms for approximate distance have been developed. The interested reader should
consult the references [KS95, HP9S, FNS96, SM97] for more information on this subject.

3.6 Locating Cryptogenes and Guide RNA

A recent application of sequence alignment methods was given by A. von Haeseler et al.
[VHBS*92]. DNA is transcribed into pre-edited mRNA, whereupon the intron transcriptions
are removed. In some instances, before producing the final mRNA, the pre-edited mRNA
is edited — pointwise, certain nucleotides are added or removed. The original genes, called
cryptogenes, may thus be significantly different than the cDNA obtained by retranscribing the
edited mRNA back into DNA. One editing operation can shift the entire reading frame, so
it is truly amazing that nature has evolved such an intricate mechanism to produce proteins.
There are many documented cases of editing found in plants, fungi, and animals, but for
mitochondrial mRNA in the case of kinetoplastid protozoa (such as trypanosomes), guide
RNA (gRNA) has been found that forms, over a small region, a (reverse complementary)
template for the desired nucleotide sequence. The gRNA forms a short anchor region with
the pre-edited mRNA downstream of the edited region (i.e., on the 3’ end of the pre-edited
mRNA) and forms a perfect hybrid (allowing G, U base pairs) with the mRNA. The anchor
region is terminated by a mismatch, which starts the guiding region of the guide RNA. This
region guides the editing of the cryptogene. There is low sequence similarity of the guiding
region with the corresponding region of the pre-edited mRNA of the cryptogene, but a perfect
match (allowing G, U base pairs) with the edited mRNA. See Figure 3.9 for details.

More complicated still, there are cases of chaining of guide RNAs in the sense that a
first gRNA anchors itself on the pre-edited RNA, permits the editing over a small region,
and the newly edited portion is reverse complementary to a second gRNA responsible for
further changes. This permits a linear application of desired editing. See [AH94, ES99] for a
description of known mechanisms for RNA editing.

In {vHBS%92], algorithms derived from Smith~Waterman local sequence alignment are
given for finding potential gRNA genes from a given cryptogene, and for finding potential
cryptogenes from similar proteins. Since Smith—Waterman alone does not place real gRNA
genes among the highest scoring sequences found, certain rules concerning the formation
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5'-G- - - -A-A- A-(fv-(‘}-A-irA‘i ixi}i-(l“r(]}U U-----G-3' cryptogene

~ U U-U-U-U- 5’ guide RNA
3= W anchor
guiding region
5'-G= - - =A-A-A-G-G-u-u-u-A-A-y-A- U-U-----G-3' cryptogene
3 -Ii-?:?:(i:-A-A-A-E—g-i-g-lj'@:?:‘a:?:?: guide RNA
gu1d1r1g region anchor

Figure 3.9 Cryptogene and guide RNA before and after editing. The inserted uracils are indicated by
lower-case us. Usual Watson—Crick base pairs are indicated by thick lines, G-U bonds by thin lines.

of an anchor region between gRNA and pre-edited mRNA are given. Later a Markov chain
model is developed, for which the expected length of gRNA is computed. This computation
agrees fairly well with the data.

The following algorithm accounts for pointwise uracil additions, as documented in the
trypanosome data. For the application to gRNA, we match the cryptogene with the gRNA
gene. For simplicity, we consider the matching of the RNA transcripts of both the gRNA gene
and the cryptogene (instead of the DNA genes themselves; of course, one has to use the DNA
version for a database search). Recall that in RNA, there are no steric interferences between
guanine and uracil, and so we consider the weaker G-U bond in addition to the Watson—Crick
pairs A-U with 2 hydrogen bonds and C—G with 3 hydrogen bonds. Consider the pre-edited
cryptogene transcript as the ¢ sequence, and the gRNA as the b sequence. Thus, the pairs
(—,A) and (—,G) corresponds to insertions in the cryptogene a. Since U base-pairs with
both A and G, this correspond to the insertion of U as described above. This suggests the
similarity function

( 1 if (-T)y) € {(A’U)v(U’ A)}7

1) if (z,y) € {(C,G),(G,C)},

C3 if (-'E,y) € {(GvU)’ (Ua G)}a

oley)=4 o if(ey) € {(-4).(-6),

- lf(.’L‘,y) € {(—,U),(—,C),(A,—-),(C,—),(G,—)},
Cs if (wvy) € {(Ua _)}’

—oc  otherwise.

Note that ¢4 corresponds to the editing instance of adding uracil to the pre-edited mRNA,
while c5 corresponds to the editing instance of deleting uracil from the pre-edited mRNA. If
one models no uracils being deleted, then one sets ¢cs = —o0. This model disallows bulges
and interior loops, since we do not account for any pairing of bases that do not form a Watson—
Crick or G-U bond. Thus, the last line in definition of ¢ is —00

For gRNA search in the organism L. tarentolae (4 known cryptogenes at the time of
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[VHBS192)), the similarity function was defined by

(500  if (x,y) € {(4,U),(U, A)},
1000 if (x,y) € {(C,G),(G,C)},
1 if (x,y) € {(G,U), (U,G)},
('E y) < 0 1f(1‘ y) € {(—,A),(*,G)},
-0 if (T y) € {(_7U)7("'$C)’(A7 _)'(Cv —),(G, _)}v
-0 lf(‘l‘vy) € {(Ua_)}a
—oo  otherwise.

The algorithm of [vHBS*92] is reported to be robust, in that setting ¢; = 1, ¢y = 3,3 = 1
does not change the results of search.

3.6.1 Anchor and Periodicity Rules

Since known gRNAs did not have the highest scores for the algorithm, the following rules
were introduced in [vHBS*92]. These rules concern formation of an anchor region (where
gRNA binds to pre-edited mRNA) and the periodicity of uracil inserts. Only insertion of uracil
was considered.

Rules

1. There are at least 5 base pairs at the 3’ end of cryptogene region, including G, U
pairs. This is the anchor region.

. There can be no more than 3 G, U base pairs in the anchor.

. There must be at least 4 contiguous Watson—Crick base pairs in the anchor.

. No more than 8 contiguous Us may be inserted.

. There are no more than 3 base pairs between successive U inserts.

. There must be at least | base pair at the 5" end of the cryptogene (end of editing).

[ NV, IS "R S

The rule applications were incorporated into the dynamic programming algorithm,
providing better (but still not optimal) results.

3.6.2  Search for Cryptogenes

Until now, knowledge of the cryptogene has been assumed, and we have searched for gRNA
genes. One can search for cryptogenes by finding similarity between unknown cryptogenes
and homologous proteins y; ...y, (y;5 are amino acids) of closely related organisms. Here,
similarity between two amino acids is given by the Dayhoff PAM 250 matrix, d is the cost
for a nucleotide gap, while 4,4 is the cost for an amino acid gap. Again, we use the RNA
transcript of the cryptogene for simplicity.

Since we compare a nucleotide sequence a; . .. a, with an amino acid sequence y; . .. ¥m,
we have always to compare a nucleotide codon with an amino acid in the matching case. Note
that this implies that we explicitly model the reading frame (and the shifting of the reading
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frame caused by insertion of Us). Hence, define

(0 )
Hi - On
H;; — da
Hi_z;1 — s(ai-2ai—10;,y;)
Hi i1 — s(uai-1a;,y;)

Hl"j = max < Hi-—‘z,j—l - s(ai_luai,yj) } .
Hi o1 — slai—iau,yj)
Hi__lyj_l - s(uuai,yj)
Hi—].j—l — s(ua,-u,yj)
Hi1;-1 — s(auu,yj)

L Hij - s{uuu,y;) ]

Again, we use a lower-case u to indicated insertion of Us in the transcript of the cryptogene.

3.7 Expected Length of gRNA in Trypanosomes

The problem with the previous approaches is that they do not rank known guide RNAs among
the highest scoring ones. For this reason, [vHBS192] developed a Markov chain to model
guide RNAs that respect the rules given in Section 3.6.1 (with the exception of the rule
concerning § contiguous uracils) in order to estimate the expected maximum length of gRNA
from given parameters. It would be interesting to write a program to output the expected
length without going through the following statistical analysis.

The general concept is as followed. Since a sequence is a guide RNA only if there is a
corresponding cryptogene, one generates the guide RNA together with the cryptogene. The
simplest way to describe the construction of guide RNAs is to start with the anchor and
proceed into the guiding region. Since we want to use the standard left-to-right direction
for strings, this implies that we write down alignments of cryptogene and guide RNAs in the
reverse direction compared to Figure 3.9 (see Figure 3.10, where we have also specified the
editing events).

edit events
ST
-U-U-U-C—U—C C ; C-C-U-U- 3’
anchor gu1d1ng region

Figure 3.10 Reverse alignment (together with edit events).

Recall that a = a; .. .a, is the transcript of the cryptogene, and b = b; ... b,, the guide
RNA. Sequences are modeled as being generated from independent, 1dent1cally distributed
nucleotides. Set

Pa = Pria; = a]
and

gda = Prlb; = a]
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fora € {4,C,G, U} (since we use the RNA transcripts again). Let

P1 = paqu + puqa + pogc + Pac
be the probability of a Watson—Crick base pair, and
P2 = pcqu + puda
be the probability yielding a G, U base pair. Then the probability of a non-pairing is
Pr{mispair] = 1 — p; — pa.

Let L, be the length of the anchor region, and L, the length of the edited region. The length
of the guide RNA is clearly L, + L.. Elementary probability yields an estimate for maximum
length of L,, while the method of Perron—Frobenius yields an approximation for the expected
maximum length of L.

The anchor must begin after a mismatch, then consist of a region with base pairs, allowing
at most three G, U base pairs, and requiring at least 4 contiguous Watson—Crick base pairs.
Here is an example of a mismatch followed by an anchor:

AWWWNWWWNWWWNWIWIWWW,

where X denotes mismatch (before start of anchor), W denotes Watson—Crick base pair, N
denotes G, U base pair. Note there are 3 G, U base pairs in the anchor (the maximum allowed),
and that the anchor length is 16. If the length of the guide RNA is shorter than 16, then not
all possible strings containing less than 3 Vs have at least 4 contiguous W's (Watson—Crick
base pairs). For example, the string of XWW NWW NWW NWW of length 11 does not
satisfy this condition, whereas the string XWW  NNWWWW NWW of the same length
has 4 contiguous W's. If, on the other hand, the anchor has length at least 16, then we know
that the condition ‘less than 3 Vs’ implies that there are at 4 contiguous W's. This implies that
for anchors of length at least 16,

3
Pril, > 0> (1-pi - Z()f*p';

From the binomial theorem, we have the approximation

(1 +p2) = El:( )pf s i( )p{‘kpél

so that

Pr{La > ) = (1 = pr = p2) (01 + p2)5
hence

Pr(L, =€)~ (1 —p1 — p2)’(p1 + p2)°

where the extra (1 — p; — p») term comes from having a mismatch at the end. In this case, the
mismatch signals the start of editing.
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We continue with the description of the guiding region of the gRNA, which starts with the
mismatch that ends the anchor region. Note that, by definition, a RNA sequence is a gRNA
if there is a corresponding cryptogene whose edited mRNA aligns to the gRNA. Hence, we
have to generate (at random) alignments of gRNA to cryptogenes.

We have to consider the edit event in more detail first. An edit event has two basic
properties: (1) editing can take place only if the gRNA has G or A (since these can base-
pair with U), and (2) there is a mismatch if editing is not performed. Hence, the possible edit

events are
i ?_ i ‘i- 9 .9 oo 9 — .
These events correspond to the following mismatches with the pre-edited mRNA of the

cryptogene:

LY N 2A— .. Pl o G- - - 2-C-. ..

SV D PN P

respectively. Thus, when generating at random an edit event, we have to take into account that
there is no base-pairing with the next nucleotide in the cryptogene. For this reason, we add the
next nucleotide that has to appear in the (pre-edited) cryptogene to the edit event. The states

A. A~ G.  Ga Co
P S

characterize edit events, where the following nucleotides in the cryptogene are 4, 4, G, G, C,
respectively. The states

represent base-pairing in the alignment. They are used to count the number of matches after

an edit event. The Moore automaton for generating alignments of gRNA and cryptogene is

given in Figure 3.11. Recall that a Markov model is a stochastic Moore automaton. Note that

the automaton restricts the number of successive matches to 3, which accounts for Rule 5.
For example, one possible sequence of states generated by the automaton is

A-
This sequence of states represents a set of possible guiding region alignments. For example,
this set includes the alignment

Q
e | O

— L —ug—r
1H
GAA

A
i
A

¥ |-
e -
e | —-)
|-
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Figure 3.11 Moore automaton for generating alignment of guide RNA and edited cryptogene for the
guiding region,
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but excludes the alignment

BB ORED
AUG G CGA

AC

The reason is that the first C' in the above sequence (indicated by an arrow) does not satisfy
the conditions we have stated above for edit events.

We continue by adding the probabilities to the Moore automaton given in Figure 3.11, thus
generating the Markov chain. Recall that a Markov chain is a stochastic process producing a
sequence of states goq, - - - qtqi+1 - - . , Where g, is the state at time t. For the initial state gg, we
know that it must be an edit state (since the guiding region starts with an edit state). Consider
for example the probability

This is the probability that we see a symbol A in the cryptogene (albeit it appears only later
in the alignment), and a symbol A4 in the guide RNA, i.e., paga. Similarly, we get

o[>

Pr [qo =

—

Q—=1Q

A G
Pr {tm =(ﬁ; ] =paqa, Pr {cm :E ] =peqa, P-r[rm = ] = Peqc,

and
E—r
Prlg=1 | =poqa.
r [90 A } Pcga
Since a guiding region does not start with a match, we get
* * *
Pr q():%xl =0, Prigg=1x2{=0, Pr qg=_!_x3 =0.
X

By 7, we denote the distribution for the initial state, i.e.,

T = (paga,PA9G,PGIA, PGYG,PCdA,0,0,0).

Next, we have to calculate the transition probabilities. We want to describe two kinds of
transitions in greater detail. The first are transitions from a match state into an edit state. For
instance, consider

é—)
u
P?"I:qt+1 :(|; ‘qt:!)( 1]

3¢

*

Then this is again the probability that we see an A in the cryptogene, and an G in the guide
RNA, i.e., paqq:.
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The second kind of transition is a transition from an edit state to a match state, e.g.,

A
i ¥
P?{QHI:%XIG‘%:G]. (3.21)

In order to investigate this probability, we have to consider all alignments that are allowed for
any state sequence of the form

Q—= >
e

X1 -

Since we know already that the next letter in the cryptogene must be A (by the definition of the
edit state), and since we know that a match must follow, we know that the allowed alignments
are of the form
u
. 3 .
G

Since the only new character we determine is the U in the guiding region, we get that the
transition probability given in (3.21) is gpr.

The transition probabilities are summarized in matrix A given in Table 3.1. Note that the
matrix A is substochastic. Given this matrix M, we know that the probability for a guiding
region of length k is given by the probability for a sequence of states of length k generated
by A that begins with an edit state and ends with a match state (according to Rule 6 in
Section 3.6.1). Edit states correspond to rows 1...5, and match states to rows 6,7 and 8.
Thus, we get

5

8 8
PriLe =k =33 mMl,; (1 -2 Mw) ,
s=1

i=1 j=6

where the term 22:1(1 — M; ;) accounts for the probability for terminating the Markov
chain with the jth state. Since M* is positive for & > 4 (i.e. all entries are positive), the
Perron-Frobenius theory can be applied to approximate AM* and therefore Pr[L, = k]
(see [VHBS*92] for details).

3.8 Exercises

I. Write a program that, given a nucleotide sequence sg along with probabilities p;, pq.
ps respectively for the insertion, deletion and substitution of nucleotides, generates
new sequences sy, Sz, . . ., where s;4 is obtained from s; by means of one insertion,
deletion or substitution. Keep track of the position where the pointwise mutation
took place, so as to produce the historically correct alignment between sy and any
s,,. Experiment with different probabilities p;, pq, ps.

(a) In the first step, develop a program that reads a DNA sequence using a command-
line argument and then repeatedly allows the user to determine the type of
mutation and the mutation site. For example, i 3 A could mean to insert the
nucleotide A in the third position, while d 2 could mean to delete the second
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Table 3.1 Transition matrix M of the Markov chain (whose graph is given in Figure 3.11).

(b)

A.| A-] G| G| C-
* * *
S I S S O I ESY I PE1
A G G * * *
é—»
H qa | gc 0 0 0 qu 0 0
A
A
{ ga | gc | © 0 0 qu 0 0
G
g—r
i 0 0 | ga | ¢ | 0 |lgv+tgc| O 0
A
g—D
Y 0 0 [ga | g | O |lgwtgc| O 0
G
Q—D
H 0 0 0 0 qa qa 0 0
A
1x1|/Paga|Page |Pcaa|pcac |pcga|l O  |p+p2| O
*
1x2 ||Paga |Pagc |Paaa|paga |pogal| 0 0 |p1+pe
*
1x3 ||PA%4|Padc |Paaa|padc |pogal| O 0 0
*

nucleotide, and s 4 C could mean to substitute a C in the fourth position. After
each step, the program should output the total number of mutations effected
and produce an alignment between the original input sequence and the current
mutated sequence.

HINT An approach along the lines of bucket sort can be made, where if the
original input sequence has length n, one keeps track of an arraya[ ] ofn+1
arrays of character. Thus a[0] might be the array of characters inserted before
the first nucleotide of the original sequence, while a [ 1] consists of that character
in the first position of the original sequence, together with other characters
inserted between the first and second character of the original sequence, etc.
Extend the program so that random mutations will be carried out in random
positions of the sequence, where the user enters as command-line arguments the
DNA sequence and the total number of mutations to be carried out (i.e. total
number of generations). Your program should be so written that if no number of
mutations is entered, then the program goes into the interactive phase as in part
(1a) Experiment with different values for the probabilities of insertion, deletion

129
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and substitution.

2. Implement Gotoh’s algorithm to determine the sequence alignment distance
between pairs of nucleotide sequences (you need not implement the backtracking
algorithm to determine the alignment, but only determine the distances). Using
command line arguments, your program takes a given input file consisting of
nucleotide sequences, and outputs a distance matrix D = (d; j), where d; ; is the
sequence alignment distance between the ith and jth sequences. This program can
be used in combination with phylogeny algorithms discussed in Chapter 4.

3. Implement Gotoh's algorithm for sequence alignment, with backtracking to
construct the alignment between two input sequences, given in command line
arguments.

4. Write a program to create a dot plot when comparing two amino acid or nucleotide
sequences. Given two input sequences a,. . .. , @, by, ... , by, your program should
output all pairs (¢, j) forwhich1 <i < n,1 < j <manda; = b;. Using a plotting
program such as gnuplot, you should then produce a 2-dimensional plot with a
dot in the position (n + 1 — i, j) for each output pair (i, j). Before the advent of
dynamic programming sequence alignment methods, such dot plots were used by
biologists, who detected possible local alignments by the presence of a diagonal
line of dots from the top left towards the bottom right in the dot plot. Test your
program on the proteins Ste6 and Cdc25 from yeast, where you can find the yeast
genome at www.mips.biochem.mpg.de.

5. Align the Epstein—Barr and HIV genomes, using BLAST and your algorithm.

6. Prove that the Smith—Waterman local alignment algorithm is correct. You need not
take apply a special gap penalty, so that

H;; = max{0, S(ax,... ,ai,be,... ,bj) |1 <k <i 1< £}

where
Hoo = 0,
Hyp; = 0,
Hi,() = 0’
H,"j = IllﬁX{O,H,‘_LJ_[+S((l,',bj),H,‘~1_j+(S,Hi‘j_1+6}.
Define
H(a.b) = max{S(ag,...,a;,be,... . b;) |1 <k <i<n,1<l<m},

and show that the optimal alignment of a subsequence of a with a subsequence of b
has score

H(a,b) =max{H;; |1 <i<n1<j<m}

7. Using the software SAM of the University of California at Santa Cruz for building
hidden Markov models, construct a multiple alignment of 10 tRNAs from M.

Jjannaschii. You should create a file called trnal0. seq consisting of the 10
tRNAsS, as follows:
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; This is a comment followed by ID and sequence!!
TRNALI
GGGGAUGUAGCUCAGAGGCCCCGGGUUCGAUCCCCGGCA

TRNA2
GGCCAUGUAGCUCAGCCCCGGGUUCGAUCCCCGGCA

Type the following commands:

(a) buildmodel test -train trnaf0.seq

(b) buildmodel test -alphabet RNA -train trnal0.seq -seed 0

(c) align2model trnalQ -i test.mod -db trnal0.seq

(d) prettyalign trnal0.a2m -190 > trnalO.pretty

(e) buildmodel test -train trnal0.seq -seed O -printFrequencies |
(f) drawmodel test.mod test.ps

(g) hmmscore test -i test.mod -db trnal0.seq

You can then view the postscript file using ghostview. Now, use SAM to
perform sequence alignment for 2 sequences, and compare the result with your
implementation of Gotoh'’s algorithm. Note that SAM does not necessarily yield the
same alignment obtained by dynamic programming.

. Implement a version of sequence alignment which allows the user to highlight

and color (hence weight) certain portions of a nucleotide sequence (or amino acid
sequence). This project could use Motif with X-Windows, or Java.

A biologist who enters a nucleotide (or amino acid) sequence might be
particularly interested in finding sequences with BLAST that come very close to
matching in a particular region, because of knowledge of biological function of that
region. Ideally, the biologist user should be able to select a region with the mouse,
and give a certain color to that region, where different colors represent different
strengths of desired match.

Using the usual dynamic programming algorithm for sequence alignment, this is
a simple task. Namely, letting d; ; represent the distance between prefix x;,... ,x;
of word z and prefix y,, ... ,y; of word y, write the recurrence relation

div1j+1 = min{d; j + mip1(Tiv1,¥j01), div1j + gj+1,dijr1 + gitr }-

The usual recurrence relation has a function m(z;41,y;+1) for the cost of a match
between ;4 and y;41, where 0 is for a match, and some penalty for a mismatch.
Here the penalty for a mismatch depends on the position ¢ + 1 in the first sequence
x (this sequence is the sequence the biologist is trying to apply BLAST to find
homologs).

Use Monte Carlo with simulated annealing to perform local multiple sequence
alignment; i.e. choose at random one of the sequences to be aligned, shift by
a random amount, and accept or reject according to whether it is energetically
favorable or unfavorable according to the Metropolis criterion.

. Write a program that carries out a sequence of pointwise mutations in an input

nucleotide sequence, and then generates a ‘historically correct’ alignment between
the original input sequence and the output mutated sequence. (Since the program

131
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keeps track of where the pointwise mutations were made, such a historically correct
alignment is possible.)

3.9 Appendix: Maximum-Likelihood Estimation for Pair Probabilities

Let ¥, mino be the one-letter alphabet of amino acids, and let p;,...,p,, be an arbitrary
enumeration of the pair probabilities {pap | 4, B € Tamino}- Let s and s’ be two sequences
of length n aligned without gaps, and let n; be the number of times the ith amino acid pair
occurs in the alignment of s and s'. Then 27;1 n; = n. We want to estimate the parameters p;
from the alignment of s and s’. We will handle the simple case where forall i with 1 < i <
we have n; > 0, i.e., all possible pairings occur at least once in the alignment of s and s’. The
description of the case that there some pairings are missing would be too long.

Applying the maximum-likelihood approach as defined from Chapter 2, we want to
maximize the likelihood L (M) = Pr[D|M] of the model M, given the data D. In our case,
the data D is given by the sequence alignment, and the model A by the pair probabilities
Py s Pms Where m = 20 - 20 = 400. Thus, we want to maximize

m
f(pl»- B »pm) = Hp?i
i=1

subject to the restrictions

Zp,- =1 (3.22)

and

Vi<i<m: p; >0. (3.23)
The restriction (3.22) can directly be handled using a Lagrange multiplier (in contrast to the
restrictions in (3.23)). We will calculate the extremum of f under the restriction given in
(3.22). As we will see, the solution to this problem also satisfies the other restrictions in

(3.23) and is hence a solution of the complete problem.
For this purpose, let

m
g(plv"' ,pm) = Zpl -1
i=1

We have to find the maximum of

F(plv-"7prl>/\) = f(plv-“7pn)+/\g(p17"'?pn)
m m
= HP?‘*’A(EPi—l),
i=1 i=1

where A is the Lagrange multiplier. Under our assumption that n; is greater 0 for all
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1 < i < m, the partial derivations of F are

F )
oF _ '-"_IHp;’wL/\

op, ~ " J#i
= n,ml:plzi + A (3.24)
and
o= ipi -1 (3.25)
Setting (3.24) equal to 0, we get
pi = —n,-———H;n:; i (3.26)

Setting (3.25) equal to 0 givesus 1 = Z:’;l pi, which yields, with (3.26),
m m n;
1=) ~nih&—, (3.27)

and therefore

With (3.26), this yields

The solution p; = i satisfies the additional restriction p; > 0. and it is easy to check that
this is really a maximum of f (under the restriction g(p,...,p,) = 0).
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All About EVE

So the Lord God caused a deep sleep to fall upon the man, and while he
slept took one of his ribs and closed up its place with flesh: and the rib
which the Lord God had taken from the man he made into a woman and
brought her to the man. ... The man called his wife’s name Eve, because
she was the mother of all living. (Genesis 2,3, The Holy Bible, Meridian
Books, 1962).

4.1 Introduction

From the remarkable paleoanthropological work of Louis and Mary Leakey, Donald
Johanson, and others, there emerges a generally accepted picture of the evolution of modern
man, whose hominid ancestors diverged from ape lines around 5-6 million years ago. As
contrasted with the multiregional model,' the Out of Africa Model posits the evolution of a
line (or tree) of hominids, who adapted to the savannah life in Africa under the then prevailing
dryer climatic conditions, and who left Africa not more than 1 million years ago. D. Johanson
discovered the fossil remains of a female Australopithecus dated at 3.5 million years, whom
he named Lucy.? The Leakeys’ fossil remains of Homo habilis from the Great Rift Valley
in Ethiopia were dated at around 2 million years.® Homo erectus emerged in Africa around |
million years ago, was unusually tall (about 6 feet), had a smaller birth canal than modern man,
but because of this and the smaller pelvic rotation, had a better structure for bipedalism and
could run faster than modern man [JJE94]. Modern Homo sapiens is thought to have emerged
between 100000 and 60000 years ago. By a new technique of thermal luminescence, cave
art (Lascaux and other caves) have been accurately dated, some only at 12000 years ago.
Though the Lascaux cave art, being European, is better known to the public at large. certain
caves in Australia have been found with similar cave art and dated at around 30 000 years. It is
generally accepted that Cro Magnon man, responsible for European cave art, is our immediate
ancestor H. sapiens, and was distinct from Neanderthal man, the latter having become extinct
around 30000 years ago. Indeed, DNA amplification and sequence alignment by S. Piibo an

! The multiregional model posits the evolution of Homo sapiens from a convergence of various distinct
hominid lines in different geographic regions.
2 The Beatles’ song ‘Lucy in the sky with diamonds’ was playing in Johanson’s camp when he returned after

his discovery, hence the name Lucy.
3 Certain paleoanthropologists now tend to believe that Homo habilis, rather than being a distinct species of
hominid, is rather a ‘catch-all’ for a number of hominid fossil fragments.
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co-workers supports this view. However, it is believed that Neanderthal lived in some areas at
—-the same time as Cro Magnon, sitice nearby cave sites in Israel indicate the presence of both
species 35 000 years ago.
Against this background of “painstaking paleoanthropological work, R.M. Cann, M.
Stoneking, and A. Wilson [CSW87] carried out a statistical analysis of the mitochondrial
~ DNA extracted from the placental tissue of 147 women of different races and from different

countries. By constructing a phylogenetic tree under the assumption of a constant molecuiar
“clock, Alan Wilson's group (University-of California at Berkeley) concluded that modern man

emerged from Africa roughly a mere 200000 years ago, and that race differences arose some
750000 years ago! This sensational discovery caught the public attention, when on 11 January
1988, Newsweek featured a cover article on the Mitochondrial Eve hypothesis. As reported in
- [JJES4], A. Templeton (Washington University in St Louis), later obtained 100 distinct trees,
all at most 2 steps away from Wilson’s tree, and all of which support a non-African hypothesis.
Moreover, the molecular clock has been claimed by some specialists not to be constant, and
Wilson's clock not to be accurate, leading to an analysis that supports a common ancestor of
modern man from 100000 to 1 million years ago.

Human mitochondrial DNA has a circular double-stranded form consisting of about 16 500
base pairs, and is known to contain genes-for coding 13 proteins, 22 tRNA genes, and
2 rRNA genes [GT94]. Mitochondria are inherited in a growing mammalian zygote only
from the -egg, hence an individual's mitochondria comes from his/her mother, the mother’s
mitochondria come from her mother, etc.* Mitochondrial DNA, mtDNA, is known to have
pointwise mutation substitution rates roughly 10 times faster than nuclear DNA. To simulate
and test the conclusions of Wilson’s group and those of other biologists, one needs knowledge
(or mathematical models) of molecular evolution rates as well as computer algorithms for
generation of phylogenetic trees. That is the topic of this chapter.

We begin with a discussion of mathematical models for pointwise substitution in nucleotide

-sequences, and then go on to develop three types of algorithm for the construction of
phylogenetic trees (clustering methods, maximum likelihood, and quartet puzziing). The
phylogenetic tree construction methods introduced in this chapter are only an introduction
to the field. In particular, there are numerous other approaches that are not dealt with in this
text (such as neighbor joining and parsimony), but are adequately covered in the literature.
Moreover, to the best of our knowledge, the ceniral question of describing mathematical
- conditions satisfied by those trees, which are historically correct phylogenetic trees, seems yet
unanswered. Of course, this is not a question for computational biology, which is concerned
~~with algorithm development, but for melecular biology and population genetics. The situation
as of a few years ago was summarized by an expert of population genetics in the following
statement:

At the present time, however, the theoretical foundations of many tree-
making methods are not well established from the point of view of

[Nei87))

! The ovum is substantially more complex than the spermatozoon, and requires a correspondingly higher
investment of an organism’s resources. For instance, human females produce on the order of 400 eggs
throughout a lifetime, while human males produce on the order of 7 million sperm per hour.
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4.2 Rate of Evolutionary Change

Given n distinct species, all of which evolved from a common ancestor, there is historically
a unique phylogenetic tree. This is perhaps not quite accurate, since a species, rather than
having a clear-cut, unequivocal taxonomic identity, is really a probability distribution on a
gene pool.

A taxon, sometimes called operational taxonomic unit or OTU, is an entity (such as species,
amino acid sequence, nucleotide sequence, language, etc.) whose distance or similarity from
other entities can be measured. In computational biology, we are mostly concerned with taxa
of nucleotide and amino acid sequences, but one could attempt to construct a phylogenetic
tree for North American Indian languages, for instance. When constructing a phylogenetic
tree based on data from protein or nucleotide sequence comparisons, one can apply sequence
alignment algorithms to obtain a distance measure d; ; between two taxa. We are interested
principally in the topology of the phylogenetic tree, and to a lesser extent in the branch
lengths. In assigning branch lengths to phylogenetic trees, one must consider as well whether
evolutionary rate is constant. It is to these considerations that we turn first.

The determination of a phylogenetic tree for the evolution of species from amino acid or
nucleotide sequence comparisons depends on measurements and assumptions concerning rate
of evolutionary change, i.e. a molecular clock. This is not a simple task when comparing
homologous sites in two sequences, since over long periods of time, there can be back
mutations (the site in one sequence may originally contain A, later be mutated to G, then again
be mutated back to A) as well as parallel mutations (homologous sites in the two sequences
undergo the same mutation). Following [Nei87], in Sections 4.2.1 and 4.2.2, we look at well-
known approaches for mathematically modeling the evolution of amino acid and nucleotide
sequences, subject to the restriction that only substitutions will be considered.

4.2.1 Amino Acid Sequences

From a multitude of studies, it has become clear that the rate of amino acid substitution
varies between organisms, and between protein classes, presumably because of the selection
pressure of protein functionality, though the overall rate is roughly constant (the number of
substitutions is roughly linear in time). Letting A denote the amino acid substitution rate per
site per year, it has been shown that X for guinea pig insulin is roughly 5.3 x 10~°, compared
with a rate of 0.33 x 10~2 for other organisms,’ a variation by a factor of more than 10. Also,
fibrinopeptides® have a substitution rate of 9 x 10~? per site per year, as compared with a rate
of 1 x 10~ ! for histone H4,” while the rates for cytochrome c and for hemoglobin lie between
these two extremes. Changes in the hydrophobic core of a protein are often not tolerated,
since the tertiary structure usually changes radically upon substitution of a hydrophobic by a
hydrophilic amino acid.?

5 p. 54 of [Nei87}

6 Fibrinopeptides are involved in producing fibrogen, which is converted to fibrin for blood clotting.

7 Histones are proteins around which DNA is wrapped in the nucleosomes. The chromatids are dark banded
regions when seen under a microscope.

8 A good example is the class HS70 of heat shock chaperones of 70 kilodaltons, whose hollow, cylindrically
shaped core consists of hydrophobic amino acids. When an incorrectly folded protein (often signaled by
hydrophobic residues on the outside) lies within the cylindrical core of HS70, a conformational change
occurs to produce an environment allowing the protein to refold correctly.
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How are amino acid substitution rates computed? One technique proceeds by determining
the amino acid sequence for the same protein of two distantly related species, for which
geological data suggests a time of divergence. Define unit evolutionary time T',, the average
time to produce one substitution per 100 amino acids, by

1
T,= ——.
“ 7 100A
For histone H4, it has been determined that there are only 2 differences in a sequence of 105
amino acids, when comparing calf and pea. Since it is thought that plants and animals diverged
roughly 1 billion years ago, T\, is thus estimated at between 0.5 to 1 x 10%, yielding

1
1007,

~ 1071,

~
~

Let X and Y be homologous proteins of the same length n. Let n be the length of the
same protein X, Y isolated from two distantly related species. Letting ng be the number
of differences between homologous amino acid sites, the probability p of an amino acid
substitution occurring at a given site of either X or Y can be estimated by

1y

prR —.

n
Note that 1 — p is the probability that no substitution has occurred at a given site of either
X or Y. Over a long period of time, because of backward and parallel mutations, this may
be a serious underestimate of p. A second approximation of p can be derived by assuming
that amino acid substitution at a given site in a protein is a Poisson process. Let Z be a
random variable counting the number of mutations over time ¢ at a fixed site for an amino
acid sequence having substitution rate A per site per year. Then the probability Pr{Z = k]
that & substitutions have occurred over time ¢ at a given site satisfies

PﬂZZk%:KAH:e”d¥¥,

The probability Py, (0) that no substitution occurs at a given site of X is then e~ hence the
probability that no substitution occurs at the same homologous site in X and Y is

g=e
From this, the total number of substitutions d = 2At occurring at a fixed site satisfies

d=—lIng,

and a first approximation of d can be obtained by
d~-In(1-24).
n

A more serious criticism of this approach altogether is that the Poisson process model assumes
that A does not depend on the residue site in a protein. As mentioned above, however,
hydrophilic substitutions in a hydrophobic core usually lead to a dysfunctional protein, so it is
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clear that substitution rate is site-dependent. Another example is that substitution of glycine,
the smallest amino acid, by another amino acid often disrupts the function of the protein.

For these reasons, the amino acid substitution matrix methods of Dayhoff [DSO78] (PAM
matrices), Henikoff [HH92, HH93] (BLOSUM matrices), and more recently of Wei, Altman
and Chang [WAC97] have been proposed. See Sections 3.2 and 3.9 on scoring matrices for
a more detailed treatment of the PAM matrices. By comparing sequences of various classes
of proteins (hemoglobins, cytochrome c, fibrinopeptides, etc.) Dayhoff devised an empirical
estimation of the probability p; ; that during one evolutionary time unit 7’,..° amino acid
residue ¢ will be substituted by residue j. The substitution matrix obtained, M = (p; ;).
is called the PAMI matrix, since there is one point accepted mutation per 100 residues.
Let 7 = (m,...,m0)T be the amino acid composition frequency of a given polypeptide,
expressed as a column vector.'” Denoting M? as the ¢th matrix power of M, it follows that
the amino acid frequencies ¢t time units later (recall that the time unit is T,) are given by the
matrix product

Mtr

of M! with the column vector m. Often one uses the PAM250 (i.e. A2%%) matrix when
comparing two proteins using sequence alignment algorithms. Note that under this model,
the probability p that a substitution at a given site of X or Y has occurred during ¢t time units
is given by

20
2t
p=1-% pii'm
i=1

where pgit) is the ith diagonal entry of A/t

A recent technique has been proposed by Wei, Altman, and Chang [WAC97], who
introduced the WAC matrix, created by measuring the physico-chemical properties in radial
shells up to 10 A centered around a given amino acid, thus constituting a description of the
‘micro-environment’ of the amino acid. The WAC similarity matrix has integer entries ranging
between —5 and 4, where W AC(a, b) = 4 when amino acids a, b are identical, and —5 for
very dissimilar amino acids.

4.2.2 Nucleotide Sequences

Nucleotide substitution must be treated somewhat differently than amino acid substitutions,
because of redundancy in the genetic code. Synonymous or neutral substitutions are nucleotide
substitutions that leave the expressed amino acid unchanged. Glancing at the genetic code, it is
clear that most substitutions to the third position are synonymous. Moreover, from computer
simulations, it appears that the genetic code is optimized so that a single non-synonymous
nucleotide substitution is likely to change an amino acid into a related amino acid (both
hydrophobic, for instance). Since natural selection acts on protein functionality, rather than
occurrence of particular nucleotides, it has been argued that a molecular clock should be

9 Recall that T, is the average time required for one substitution to occur in 100 residues of a protein.

10 (m1,...,m20) is arow vector and (71, ... ,7r20)T is its transpose, a column vector.

1 The factor 2t appears rather than ¢, since one must consider both X and Y. Dayhoff's PAM matrices
are symmetric; going from X to Y is modeled by going from X at time ¢ backwards to time 0 and then
forwards to Y at time ¢.
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based on the substitution rate in the third codon position, which, according to {Nei87] has
been shown by Kimura to be as high as the amino acid substitution rate for fibrinopeptides.

As is the case for amino acids, it appears that nucleotide substitution rate is species
dependent, perhaps because of better DNA repair mechanisms in certain species. For instance,
it has been estimated that the nucleotide substitution rate A per site per year for nuclear
DNA of higher primates is 1.3 x 10™°, while rodents and sea urchins have the higher rate of
6.6 x 10~ Mammalian mitochondrial DNA, mtDNA, consists of about 16 500 base pairs, and
is known to evolve about 10 times as fast as mammalian nuclear DNA, with rates of 108 per
site per year. Transitional mutations (purine—purine i.e. A « G, and pyrimidine-pyrimidine,
i.e. C & T) are known to account for 92% of the total substitutions in mammalian mtDNA,
with only 8% for transversional mutations (purine—pyrimidine).'> Chloroplast DNA, cpDNA,
consists of about 150 000 base pairs, and has a much slower mutation rate than mtDNA, where
one study estimated 1.1 x 1079 per site per year.

We want to give a more appropriate modeling of the evolutionary process for nucleotides.
In the definition of the PAM matrices, one assumes a discrete Markov chain, where the |
PAM matrix is the transition matrix of the Markov chain. The parameters are estimated
from close homologs using local sequence alignment. In this estimation, it is assumed
that the two sequences are generated using one application of the transition matrix. This
implies the assumption that for the aligned sequences, no multiple substitutions had occurred.
Furthermore, it assumes that the evolutionary distance of more distantly related sequences can
be modeled by n-times iteration of the Markov chain, which would only allow evolutionary
distances that are multiples of the evolutionary distance used for setting up the 1 PAM matrix.
Of course, both assumption are simplifications.

Thus, we have to find a better evolutionary model. Both assumptions (no multiple
substitutions, discrete evolutionary time) can be avoided if one models the evolutionary
process as a continuous Markov process instead of a discrete Markov chain. The definition
of a Markov process is completely analogous to the definition of a Markov chain, except
that the transition matrix is substituted by a matrix of transition probability functions, which
depend on the time parameter ¢. For the formal definition, we need a ‘stochastic function’
X (t) with a real-valued time parameter t > 0, and which can take values from a state space

{1,....,n}. A (time-homogeneous) Markov process for this stochastic function X (t) is a
triple (Q,m, P(t)), where Q@ = {1,... ,n} is a set of states, 7 = (7y,... ,m,) is the initial
distribution (i.e., 7; = Pr[X(0) = i]), and P(t) is an n x n matrix
prat) .. pia(?)
P(t) = : - :
pn,l(t) <o Pna(t)

of transition probability functions. These transition probabilities have to satisfy the Markov
property:
PriX(t+s)=j|X(s)=1i]=Pr(X(t) =3]| X(0) =1 (MP)
= pi (1)

12 Both the higher mutation rate for mtDNA and the much higher rate of transitional versus transversional
mutations seems specific to mammals, and is not shared by Drosophila or by plant mtDNA. Note that
plant mtDNA is much more complex than animal mtDNA.
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The Markov property (MP) directly gives us p;,;(t) > 0and -, ., pi,;(t) = 1. Using an
argument analagous to the case of (discrete) Markov chains, one gets

P(t+ s) = P(t)P(s). (MP")
Analogous to Markov chains, we define p;(t) = Pr[X(t) = ], which is given by p;(t) =
> k=1 TkPk,i(t). A distribution 7* = (xf,... ,m},) is called stationary for P(t) if
m'P(t) =7"

for all ¢.
A common assumption (which we assume also for the case of nucleotide sequences) is that
the functions p; ;(t) are right-continuous at ¢ = 0:
1 ifi=j
lim p; ;(t) = ©
t—0+ P () {0 otherwise.
With this assumption, one can show that the derivative at 0 exists. This assumption allows one
to define P(0) as the identity matrix:

P(0)=1L ()
In the case of nucleotide sequences, the set of all states is @ = {1,2,3,4}, which

corresponds to the set of nucleotides {A4,C,G,T}. The stochastic variable X (¢) is the
nucleotide at a specific site, and the corresponding Markov matrix is

pl,l(t) PN p1,4(t)

\P4,1(t) ..o Daal(t)
Pr(A| A,t] Pr[C| A,t] Pr[G| A,t] Pr[T| A,t]
Pr[A|C,t} Pr[C|C,t] Pr[G|C,t] Pr[T|C,t
Pr{A|G,t] Pr(C|G,t] Pri[G|G,t] Pr[T |G|’
\Pr{A|T,t] Pr[C|T,t] PrlG|T,t] Pr[T|T.t
where Pr{o | 7,t] is short for Pr(X(t) = o | X(0) = 7].
Next, we need a simple way to generate the transition probability functions p; ;(t). We will

show, that these functions can be defined using a 4 x 4 matrix of substitution rates. For this
purpose, consider the matrix of derivations P’(t), which we define as follows:

%(t) . Bg;ﬁ (t)
P=| : o
3!’4 1 (t) L 3174 4 (t)
Then we have
v e P+ At) —P(t)
PO=m A @
. P(t)P(At) - P(1)I ,
R (b (P
_ P(At) - P(0)
R S va—

=P(t) A, (4.2)
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where A is the matrix limy, 0 g%u. That is, A is the matrix

A1 A2 A A
Aol —As Aoz Asy

A= ,
Azl Aze Az Ay
Adl A2 A3 — N\
where
_Opii . PLi(At) =1
A= 0= fim T
and
0Py oy Pij(AH) -0 o,
Aij = ot (0) = AI}Y_IEOT fori # j.

Now JA; ; can easily be interpreted as the rate per site and year for substituting nucleotide i
into nucleotide j as follows. For small At, we have

p,"j(At) = /\,"J‘At + O(At) ~ )\,‘J.At,

where the term o(At) accounts for multiple substitutions (with the property that o(At)
converges faster to 0 than At).'* Analogously, we can conclude that ); is also a substitution
rate, but this time the rate with which we substitute out of nucleotide ¢. Since any substitution
out of i must go into some j # 4, it is natural to conjecture that

A=) N (4.3)

J#i
This can be shown as follows:
. =14 pii(AY . pij(At)
A o= ] LY 250 S ) | Fig\=y)
At Z Avj ;\}Iﬂo At + (v A}HJO At
J#i JEI
. -1+ pi,i(At) + Zj#i pi.j(At) . -1+1
= lim = lim =0.
At—0 At At50 At

The remaining question is why the matrix of substitution rates A determines the matrix
P(t), as we have claimed above. The reason is that equation (4.2) is nothing other than a
linear differential equation:

P'(t) = P(t) A.

13 More precisely. this follows from the Taylor expansion at 0, which is
1
2!
] 82]),,1'
20 Ot

dp: O*p,., A
Py (A0 = pij(0) + THL ()AL + 2 =L )(AD? 4.

=0 + i, At + (0)y(an? + ...
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Analogously to the one-dimensional case, this is solved by e A, where e A! is defined by the
Taylor expansion

.
An n
M=y A0 (4.4)

n!
n=0

where we define AP as L. It is easy to check that this is a solution of the differential equation.

To find a closed form for e A, we turn to explicit forms of rate matrices. A more general
one, which will be used in Section 4.4, considers a nucleotide-specific rate u; for substituting
to nucleotide 7. Under this assumption, we get for all 4, j that u; = A; ;. By (4.3), this gives
us the following rate matrix:

—(uy + uz + uy) Us u3 Uy
A= U —(uy + uz +uq) us Uy
Uy u» —(U1 + us + ’114) g

u Uy us —(uy + uy + uy)

4.5)
Now consider the matrix P = I + A/u, where u = uy + u» + uz + wy. Simple calculation
shows that P is of the form

™ o T3 T4
m T T3 T4

P = “ ,
T T2 T3 T4
T T2 T3 T4
where 7, = . Note that m; + 72 + m3 + my = 1, which implies that P is stochastic.

Furthermore, 1t is a]ready stationary, since

MM + MM+ MA3+ Ty ... Tymy + Tgmo + Tyw3 + Tymy
P? =
MM + T T + MM+ Ty Ty ... TqW + T4 + T3 + Mgy
mi(m +m+ w3 +my) ... my(m + T+ 7wy +omy)
m(m +m+ms+my) ... my(m w3+ my)
=P

Hence P™ = P for n > 1. This gives us the solved form for e A as follows:
At —u(I-P)t _ e—utleutP

e =e
x 1" (—ut)? 20 Pn( "
e 5]
ut)?
)

n=0
n=1

[Z & “t)"l {I+P

n=0
— Aut[I_*_P ut __ 1)]
— -ulI+P( —ut ut ’——ut)
=e YI+P(1-e )

1
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Writing down P(¢) = e~ “I 4+ P(1 — e~ %) componentwise, we get
pij(t) =e "8 ; + (1 —e “Hym, (4.6)

where the Kronecker d-function is defined by

s o1 ifi=]
“J 71 0 otherwise.

The model depicted in (4.5) subsumes the model by Jukes and Cantor [JC69], who
introduced one of the first statistical models for nucleotide substitution. The Jukes—Cantor
model is generated by setting w; = uy = u3 = uq4 = «, which gives us the rate matrix

—3a « « o
o —3a « «
A=
a « —3a «
a « « —3a

Thenu = 4 and m = my = m3 = mq = ;. Hence, by (4.6), we have
1
pi»i(t) = 6—401 + :1.(1 _ e-—‘iat)
1
= Z(l + 38_4(”)
and

pis(t) = (1 —e 1) fori # j.
This gives us the possibility to determine the evolutionary process by a small number of
parameters as needed for the rate matrix A. Of course, the remaining problem is to determine
these parameters, which have to be estimated from data.

4.3 Clustering Methods

Given n taxa, where the distance d; ; between taxa ¢, j is available, how can one determine
the best fitting phylogenetic tree for the data? In principle, one might attempt to determine the
minimum number of mutations yielding intermediate ancestors for all possible tree topologies
having n leaves. Theorem 4.1 indicates that this method is infeasible, since the number of
possible binary trees is exponential. First, we introduce some definitions to clarify concepts.

A directed graph G = (V, E) consists of a set V" of nodes or vertices andaset E C V' x 1
of directed edges. Here (i,j) € E means that there is a directed edge from vertex i to j;
i.e. i = j. A graph is undirected if the edge relation is symmetric; i.e. for all vertices i, j
we have (i.j) € E if and only if (j,i) € E. In this case, we may think of E as consisting
of unordered pairs {i,j} corresponding to the undirected edges between i and j. A directed
graph is connected if between any two distinct nodes there is a directed path. A directed graph
is acyclic if it does not contain a cycle, i.e. a path (vg, ... , vy, ) where vg = vy, e > 1, and
for all ¢ < n it is the case that (v;,v;1+,) € E.
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A tree is an undirected, connected, acyclic graph. Nodes z,y are immediate neighbors if
there is an undirected edge between z and y. From this definition, it easily follows that there
is a unique path between any two distinct nodes or vertices in a tree. A rooted tree has a
distinguished node, called the root. The parent of node y in a tree T' is that unique node r
which lies immediately before y on the path from root r to y. Node y is the child of r exactly
if x is the parent of y. An ancestor of y is any node on the path from root r to y. A leaf or
external node of a rooted tree T' has no children. Non-leaf nodes are called internal nodes.
The depth of a tree is one less than the maximal number of nodes on a path from the root to
a leaf. An ordered tree is a rooted tree such that the children of internal nodes are ordered -
there is a difference whether a child is the leftmost child, or second child, etc.

A phylogenetic tree on n taxa is a tree with leaves labeled by 1,... .n. Let 71. T, be
phylogenetic trees on n taxa. Then T} = (V1,E;) and T, = (b,E ), By € 11 x 1)
and B, C V), x V5, and the leaves of both T} and T, are labeled by 1,....n. A function

[ Vi = Vyis an isomorphism between Ty and T if the following conditions are satisfied:

1. f is one-to-one and onto.

2. r € V7 is aleaf of T} labeled by 7 if and only if f(x) € V5 is a leaf of T labeled by
i (i.e. f respects leaf labels).

3. (z,y) € Ey ifand only (f(x), f(y)) € E- (i.e. f respects the edge relation).

Phylogenetic trees are isomorphic if there exists an isomorphism between them. When
phylogenetic trees are counted in Theorem 4.1 and Corollary 4.2, the number of phylogenetic
trees is counted up to isomorphism.

A tree is binary if every node has at most two children, otherwise it is multifurcating. For
phylogeny, one usually considers unordered binary trees with the property that every internal
node has exactly two children. Though multifurcating trees perhaps model biological reality
better, constructing binary phylogenetic trees meeting some sort of optimality criterion is
sufficiently complicated, so that only binary trees are considered.

It is well known that b(n), the number of rooted, ordered binary trees having n nodes,
satisfies the recurrence relation

b(n) = ifn =0,
- Z b(k (n—k-1) ifn>1,

since in the inductive case a tree of n nodes can be constructed from a left subtree of k
nodes, a root, and a right subtree of n — k& — 1 nodes. The solution of b(n) is the Catalan

number m( ) (see [Knu73] for details). Similarly, one can count the number of rooted and

unrooted binary phylogenetic trees.

THEOREM 4.1 (L.L. CAVALLI-SFORZA AND A.W.F. EDWARDS [CSE67])

There are
n—1
1-3-5---(2n-3) = 1’[(2Z m%‘”((%ﬁ) )

many rooted, binary phylogenetic trees on n taxa.

PROOF This is by induction on the number of leaves (or taxa) n > 2. When n = 2, there is
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a unique rooted, binary phylogenetic tree having 2 leaves, depicted below.

Let 7, denote the collection of rooted, binary phylogenetic trees having n leaves, and suppose
that t(n) = |7,|. By Exercise 1, any rooted, binary tree having n leaves must have n — 1
internal nodes. By the same exercise, any binary tree has one fewer edges than nodes. Thus
any rooted, binary tree having n leaves has n + (n — 1) — 1 = 2n — 2 many edges. A tree
in 7,41 can be constructed from a tree in 7, by attaching the new (n + 1)th leaf to a new
interior node created in the middle of an edge of a tree from 7,, as follows:

—
~
A
VAR l-n +1

A

K

-

This yields t(n)(2n — 2) possible choices. Also, one can attach the new (n + 1)th leaf to a
new root, where the other child of the new root is the old root of a tree in 7,,. This yields t(n)
additional trees, hence altogether t(n)(2n — 1) trees, so establishing the recurrence relation

1 ifn=1,
tn+1) —{ tn)(@2n - 1) itn > 1,

with solution
tn) =1-3-5---(2n - 3).

Finally, note that

2:4-6---2n—4)=2""2[1-2-3---(n - 2))],

and so
(2n - 3)!
tn) = ———-—.
) = 3 — 2
Stirling’s approximation n! ~ (2)" - v/2rn yields the lower bound Q((22)"~1). [ |

The 3 rooted, binary phylogenetic trees having 3 leaves are depicted in Figure 4.1. An
unrooted binary phylogenetic tree is assumed to satisfy the condition that every node has
degree either 1 or 3, where leaves have degree 1, and internal nodes have degree 3. See
Figure 4.2 for the unique unrooted, binary phylogenetic tree having 3 leaves.
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AVAVAS

Figure 4.1 The three rooted trees having three leaves.

b

C

Figure 4.2 The unique unrooted tree having three leaves.

COROLLARY 4.2 (L.L. CAVALLI-SFORZA AND A.W.F. EDWARDS [CSE67])

There are
n—2
1-3:5--(2n-35) = H(m 5’%29«%) )

many unrooted, binary phylogenetic trees having n leaves.

PROOF The number #(n) of rooted, binary trees having n leaves equals the number of
unrooted, binary trees having n + 1 leaves. Specifically, given the rooted, binary tree T with n
leaves and root r, attach a new leaf node z to r (above r). This transforms 7" into an unrooted
binary phylogenetic tree (r now has degree 3) with n + 1 leaves. This transformation defines a
1 —1 correspondence between rooted trees with n leaves and unrooted trees with n + 1 leaves.
The corollary now follows by replacing n by n — 1 in Theorem 4.1. a

4.3.1 Ultrametric Trees

Recall that a distance or metric p satisfies the axioms p(i, j) > 0 with equality if and only if
i = j; p(i,j) = p(4,7) (symmetry); p(i, k) < p(i,3) + p(4, k) (triangle inequality). Assume
that positive edge weights are assigned to a tree T'. If the value d; ; of the distance function
between all leaves i, j of T is simply the sum of edge weights along the path connecting i
and j (i.e. the path length between i, j), then d is called an additive tree metric. If, moreover,
the path length from the root r of tree T to every leaf of T is identical, then d is called an
ultrametric. Assume for an instant that only nucleotide substitutions are allowed (no insertions
or deletions) and that the evolution rate is constant across all taxa for which we wish to
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construct a phylogenetic tree (e.g. the Jukes—Cantor or Kimura model). Then the expected
number of substitutions having occurred from the root to any leaf is the same; i.e. a constant
evolution rate for nucleotide substitution gives rise to an ultrametric tree.

In {Wat95], it is shown that for every ultrametric d, and for all taxa (i.e. leaves) i, j, k, of the
three distances d(i, j). d(i, k), d(j, k). two are equal and not less than the third (the ultrametric
or 3-point condition). For instance, d(i, j) < d(i, k) = d(j, k). In [Wat95], it is also shown
that every additive metric satisfies the 4-point condition, where the latter states that for all
taxa (i.e. leaves) i, j, k, £, of the three sums S| = d(i,j) + d(k,€), So = d(i, k) + d(j, 0),
Sy = d(i, €) + d(j, k), two are equal and not less than the third. For instance, S; < S, = Sj.

Clustering algorithms attempt to repeatedly cluster the data by grouping the closest
elements. Apart from phylogeny construction, clustering algorithms are currently used to
group similar results from gene expression microarray experiments. When pairs are repeatedly
amalgamated, this clustering technique is called the pair group method PGM. A simple
algorithm for molecular data where sequence alignment distance between sequences has been
determined in a distance matrix D is known as UPGMA (unweighted pair group method with
arithmetic mean). Under the hypothesis of an ultrametric, one can show that UPGMA always
correctly constructs the original topology.

The clustering methods presented in this section do not require that distance defined from
the distance matrix D be a metric. However, one can show that the following UPGMA method
produces the correct tree topology for an ultrametric, and that the Farris transformed UPGMA
method transforms an additive metric d into an ultrametric e, and hence produces the correct
tree topology. While UPGMA methods do not yield realistic branch lengths, a later method
of Fitch-Margoliash does.

Algorithm 4.1 can be implemented using linked lists with pointers, and produces a rooted
tree. To prove that the distances assoctated with the internal nodes are well-defined, we define
the height height (e) of a node e to be the distance from e to its leaves as defined in step 3¢ of
the UPGMA algorithm. We have to show that for any node e that is generated by joining the
nodes ¢, d, we have height(e) > height(c) and height(e) > height(d). This is a consequence
of the following proposition.

PROPOSITION 4.3
Let e be a node generated by joining clusters ¢ and d in step 3b of Algorithm4.1. Let C be the
set of all clusters immediately before joining ¢ and d to e. Then

Vt € C : height(e) > height(t).

PROOF This is by induction. The base case that e was the first cluster generated by joining
is trivial since the height of leaves is 0. For the induction step, let e be the node

e

generated by joining ¢, d, and there is at least one additional cluster that is not a singleton set.
For the leaves, the claim holds trivially. Let ¢ be the node that was joined in the step directly
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Algorithm 4.1 UPGMA

INPUT: n x n distance matrix D

1. Initialize set C to consist of 7 initial singleton clusters {1},...,{n}
2. Initialize function dist(c, d) on C by defining for all {i} and {j} inC

dist({i},{j}) = D(i,])

3. Repeatn — 1 times
(a) determine pair ¢, d of clusters in D such that dist(c, d) is minimal; define

dmin = dist(c,d)
(b) define new cluster e = ¢ U d; define
C=C-{cd}U{e}

(c) define a node with label e and daughters ¢, d, where the e has distance inzﬂﬂ to its
leaves (i.e. the leaves of the subtree rooted at e).
(d) define forall f € C with f # e

dist(c, f) + dist(d, f)

dist(e, f) = dist(f,e) = 5

before joining c and d. If we can show that
height(c) > height(t),

then the claim follows from the induction hypothesis. Since ¢ was generated by joining, we
know that ¢ is of the form

where 7,5 are the clusters joined in the creation of t. Let C™™! be the set of clusters
immediately before joining r and s to ¢. Since height(e) = g%ﬂl and height(t) = d—'s—'g—rﬂ
we have to show that

dist(c,d) > dist(r,s). 4.7)
We have two cases:
1. t is different from ¢ and d. Then
C={cd,tjuc*



150 COMPUTATIONAL MOLECULAR BIOLOGY
and
Cbcforct — {C, d, r, S} U Crc.st.

By the minimality of dist(r, s) when joining r, s to t, we get (4.7) directly.
2. tis one of ¢ or d. Without loss of generality, we can assume that t equals ¢, i.e., € is
of the form

Note that our assumption (that ¢=1 was generated immediately before
generating e) implies that ¢ was joined later than d. Hence,

C={c,dyucCc
and
chreforet — fp 5. d} UC™.
By the minimality of dist(r, s) when joining r, s to ¢, we know that
dist(r,d) > dist(r,s) and dist(s,d) > dist(r,s).
Hence,

dist(r,d) + dist(s, d)
2

S dist(r,s) + dist(r,s)

= 2

dist(e,d) =

= dist(r, s),

which proves (4.7).
[ |

One can always choose as label of cluster ¢ the smallest integer 1 < i < n belonging to c.
This allows one to update the distance matrix D directly, as follows. Suppose that the labels
of the two closest clusters are ig, jo and that ¢y < jo. Then updating the distance matrix D
can be done as follows:

for (k=0;k <njk++)
if (K # jo) && (b # zo) && (Dlio]lk] # 0) )
E[lo][] — Dlig][k + Dij :
else
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E[io]lk] = ©;

for (k=0;k<n;k++)
Dlio][k] = Dlk]lio] = E[io](k];
// copy E into D and symmetrify

for (k=0;k<n;k+ +)
D[jo][k] = DIk][jo] = 0;
// erase jo-th row and column of D

A modification of this algorithm is to weight the clusters by their size, yielding
Algorithm 4.2. Note that if the cluster size of pairs amalgamated is roughly the same, then
WPGMA is essentially UPGMA.

Algorithm 4.2 WPGMA
INPUT: n x n distance matrix D

1. Initialize set C to consist of n initial singleton clusters {1}, ..., {n}
2. Initialize function dist(c, d) on C by defining for all {i} and {j} inC

dist({i},{j}) = D(i, )

3. Repeatn — 1 times

(a) determine pair ¢, d of clusters in D such that dist(c, d) is minimal; define
dmin = dist(c,d)
(b) define new cluster e = ¢ U d; define
C=C-{c,d}U{e}

(c) define a node with label e and daughters ¢, d, where the e has distance 4‘3‘“ to its

leaves.
(d) define forall f € C with f # e

dist(e, f) = dist(f,e) = |C|di3t(ca.li)| : ‘ltciilldist(d, )

In the case of WPGMA, we can define the distance function on cluster without using a
recursive definition.

PROPOSITION 4.4
Let dist(e, f) be the distance defined by WPGMA for clusters e and f. Then

dist(e, f) - > D(k,1).

lellf1 e,
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PrOOF This is by induction. The base case holds by definition. For the induction step, let e
be defined by e = ¢ U d. Then we have

leldist(c, f) + |d|dist(d, f)
lel + |d|
Ind.Hyp. Ictmlmziec,zej D(i, 1) + [dh—dllmzj‘ed,tef D(j,1)
lel + |d|
T}—[ [ZiEC,Ief D@, 1) + 3 eqres DU 1)]
lel + |d|

1
_ 171 Lkecuaaes DD 1
B el +1d = T, 2 P

dist(e, f) =

k€elef

Figure 4.3 Ultrametric topology.

In Figure 4.3, we give an example of an ultrametric topology whose corresponding distance
table and matrix is shown in Table 4.1. In Figure 4.4, we show the correctly reconstructed
topology and path lengths using the UPGMA algorithm applied to the distance matrix given
in Table 4.1. We use a presentation of trees that is commonly used by phylogenetic programs.
The internal nodes are labeled with the distance of the node to the leaves (the height of the
node). Note that this kind of representation implies an ultrametric topology.

4.3.2 Additive Metric

Consider the additive metric with distance matrix in Figure 4.6 and topology given in
Figure 4.5. Note that the ultrametric or 3-point condition is violated for this example. Namely,
dep = 9,dse = 11, dp . = 18, and it is not the case that two of these distances are equal
and not less than the third. However, the 4-point condition is satisfied. For instance, letting
i =a j =c k =dand ¢ = e, we have that S} = d(i,j) + d(k,£) = 6 + 19 = 25,
Sy = d(i,k) +d(j,¢) = 14+ 11 = 25,53 = d(i,€) +d(j,k) = 11 + 12 = 23, and it
is the case that two are equal and not less than the third. One readily verifies that the 4-point
condition is valid for all (2) = 5 possible choices of 4 points among a, b, ¢, d, e.
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Table 4.1 Distance table for the ultrametric topology given in Figure 4.3. To the right we have shown
the matrix notation of the distance table, which will be used in the following.

a b ¢ d e
al 0 6 10 10 10 0 6 10 10 10
b| 6 0 10 10 10 6 0 10 10 10
c|10 10 0 2 6 10 10 0 2 6
d|10 10 2 0 6 10 10 2 0 6
e|{10 10 6 6 O 10 10 6 6 0
_—_—_Oe
—03
d
1
—05 c
b
3
a

Figure 4.4 Output of UPGMA. The labels of the internal nodes are the distances to the leaves.

Figure 4.5 Additive metric topology.
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0 9 6 14 11
9 0 13 21 18
6 13 0 12 11
14 21 12 0 19
11 18 11 19 O

Figure 4.6 Distance matrix for additive, non-ultrametric metric.

Applying UPGMA to this example yields a tree with the incorrect topology and incorrect
branch lengths, as shown in Figure 4.7. However, since the metric is additive (i.e. the distance
between taxa i, j is the sum of edge distances along a path from ¢ to j), the modification of
UPGMA given in Theorem 4.5, due to Farris [Far77], and later independently discovered by
[KKBM?79], will compute the correct topology.

THEOREM 4.5 (FARRIS TRANSFORMED DISTANCE METHOD)

Let T be a phylogenetic tree with ancestor r and leaves (current taxa) 1, ... ,n, and suppose
that the distance d; j between nodes i, j of T is the path length of the unique path connecting
t, J. Define the transformed distance

di; —dip —djr =
eiy= S e dir 4 g

where d, = (3, di.r)/n is the average distance between r and the leaves. Then UPGMA
applied to the transformed distance matrix generates the correct topology of T .

PROOF Letlca(i, j) denote the least common ancestor of leaves i, 3. We claim that
eij =dr —d, ica(ij)-
Indeed, from the property that distance is path length between nodes in 7', it follows that

dij =diy+dj, ~ 2d, cagi,j)s

S0
dij —dir —djr _
- = —dricaij)
and hence e;; = d, — d,jeq(ij)- From this, it is immediate that the matrix (e, ;) is an

ultrametric: the distance from the root r to any leaf i is e,; = d, — dyr 1ca(r.iy). Which is

O b
o d

Figure 4.7 UPGMA incorrectly reconstructed topology.
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0 62 72 72 72
62 0 72 72 72
72 72 0 52 62
72 72 52 (0 6.2
72 72 62 62 0

Figure 4.8 Transformed distance matrix E = (e; ;).

d,, since the least common ancestor of 7 and 7 is 1, 50 d;. jcq(r,i) = 0. Thus we have the same
distance from the root to any leaf, and applying UPGMA to the transformed distance matrix
yields the correct topology. ]

Continuing with the example of Figure 4.6, we compute from Figure 4.5 that d, =
Q—ﬂ’i‘g‘tﬁﬂ = 7.2 and so the transformed distance matrix E = (e; j), where

dij —dir —djr 5 _ =
__LJ___;L_JT +d, =d, ~ dr,lca(i,j)

has the values appearing in Figure 4.8, yielding the correct topology in Figure 4.9.

What does this method yield if the ancestor r is not known, nor are distances from ancestor
to leaves? In [Nei87], Nei argues for the use of the Farris transformed distance matrix method
by taking r to be a known outgroup. When comparing n taxa, one could determine that taxon
whose average distance from all others is a maximum, and define this taxon to be the external
reference or outgroup. This is the approach in our implementation of the Farris transformed
method (either UPGMA or WPGMA can be then applied to the transformed distance matrix).
Note that without being able to stipulate the root r, the program sometimes correctly captures
the topology and sometimes not.

If we do not know the correct tree topology, then how can we tell the most likely topology?
There have been different approaches: parsimony (minimize the total number of substitutions
or distance for intermediate ancestors), tree distance (a modification of sequence alignment
distance, where trees in place of sequences are aligned), neighbor joining, and maximum-
likelihood methods. In the next section, we pursue Felsenstein’s method of maximum-
likelihood tree construction, while leaving the reader to other texts or the original literature

€ij =

2.6

a

Figure 4.9 Farris transform method.
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for parsimony, tree distance, and neighbor joining methods.

Suppose that we know the true phylogenetic tree T for n taxa. How can we measure the
deviation of a tree T, output from a phylogenetic tree algorithm, from T'? The tree T’ is
constructed from a given input distance matrix, and gives rise to an extended distance matrix
(dij) for1 < i,j < N, where N = 2n — 1 is the number of nodes (leaves and interior
nodes) for both T and T” (see Exercise 1). Thus it is natural to compare the root mean square
deviation (RMSD)

2215i<j§n(di,j —€ij)?
n(n—1)
between the extended distance matrices for 7" and 7".

According to [Nei87], Totero first investigated RMSD as above defined, while Fitch,
Margoliash, and Farris suggested alternate, easily computable statistical measures for the
deviation of tree topology and branch length error between a candidate phylogenetic tree
and the correct phylogenetic tree. All of these measures are computationally simpler than a
tree alignment algorithm. In a later chapter, we shall see a different application of RMSD for
quantifying the effect of the hydrophobic force in protein folding.

4.3.3 Estimating Branch Lengths

Figure 4.10 Observation for branch lengths.

The previous distance methods assume a constant evolutionary rate of change, and according
to [Nei87], under this assumption, when there is a large stochastic error in distance
measurements, the UPGMA method performs better than other techniques in yielding the
best approximation to tree topology. In {FM67], Fitch and Margoliash developed a method,
applicable under non-constant rate of evolution, for estimating branch lengths. This method
is based on a simple observation. For Figure 4.10, dyy = z +y, dy. = v+ y + z and
dy. . =u+ x + z; hence

. _ da.b + da,c - db,c
r = —4—2,

2
. da,b + db,c - da,c
Yy = —2——a
u+ 2 da.c + d;c - da,b.

The Fitch-Margoliash method (Algorithm 4.3) modifies WPGMA only in branch length
determination, and hence produces the same topology as WPGMA. This method repeatedly
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Algorithm 4.3 Fitch—-Margoliash

INPUT: n x n distance matrix D

1. Initialize the set C to consist of n singleton clusters {1},...{n}.
2. While number of clusters > 2 do

(a) determine closest pair a, b of clusters
(b) let C consist of all points in all other clusters
(c) determine average distances

d _ ZiEa ZjeC di,j
a,C = T A~
lal|C]
and
dy o = Zieb Zjec di»j
" [6l|C

(d) create parent node P(a,b) of a,b obtained by amalgamating clusters a, b and
define branch lengths & from P(a, b) to a and y from P(a, b) to b by

_ daptdac—dyc
T - L]
2
dop +dpc —do

y = 2

determines the closest two clusters a, b, temporarily grouping all other clusters into ¢, and
uses the above observation to determine the branch lengths x, y.

This method produces an unrooted tree, whose topology is identical to that obtained by
UPGMA. To produce a rooted tree, Nei [Nei87] suggests when there are 3 remaining clusters
a, b, c in the above algorithm, where c is the outlying group, that one define the root to be at

distance
z+y+2u+2)

4
from P(a,b) and at distance

2(u +
u+z_;v+y+4(u z)

from c.

4.4 Maximum Likelihood

In 1981, 1. Felsenstein [Fel81] applied the method of maximum likelihood to construct
phylogenetic trees from DNA sequence data whose likelithood is a (local) maximum. Starting
from a given initial topology, the idea is to use the maximum-likelihood method to determine
optimal branch lengths for the topology, then to make local modifications to the topology
and again optimize new branch lengths, etc. New species or taxa are added one, by one,
each time optimizing branch lengths and topologies obtained by local modifications. For an
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unrooted tree T' having m edges, as in the construction in the proof of Theorem 4.1, there are
m possibilities of adjoining a new leaf taxon.

As Felsenstein observes, parsimony methods (not treated in our discussion) yield incorrect
tree topologies when the amount of evolutionary change is sufficiently divergent in different
branches. Felsenstein’s model assumes the following:

e 1 nucleotide sequences are given, each of the same length m.

o In constructing a phylogenetic tree, no insertions or deletions have occurred.

o The evolutionary process is a reversible Markov process P(t), whose substitution
rate matrix A = P’(0) is given by nucleotide-specific substitution rates uy, s, w;
and uy, 1.e., the substitution rate matrix A has the form as given in (4.5).

Analogously to the case of Markov chains, a Markov process P (t) with stationary distribution
m is called reversible if

mipi j(t) = mip;i(t) (4.8)

for all states 7, j and all times t. The assumption that the evolutionary process is a reversible
Markov process is crucial to the pulley principle, given below, necessary for efficient
computation.

Letu = uy +uy +uz + ugand m; = iul Note that 7; can be interpreted as nucleotide
frequencies. As we have shown in Section 4.2, the assumption of a Markov process with
nucleotide specific substitution rates implies a transition probability function p; ;(t) of the
form

p,'yj(t) = e‘"’&m +(1- (’—.Ut)ﬂj,

where the Kronecker §-function is defined by

s [ 1 ifi=j
"7 71 0 otherwise.

While it may be intuitively clear that frequencies in 7 are stationary, because they have
evolved and appear to be a limiting phenomenon in homeostasis, what must be shown is that
for all ¢,

(7!'1,. .. ,7(")P(t) = (7!'17 R ,Tf,l).

In other words, we must show that for each j, Y, m;p; ;(t) = 7;. Fixing j, we have that
> mipi(t) [E mi(1 - ‘fﬂu')ﬂj] +mje
i i
= [71'] 1-e" Zm] +mje~ ut

= 7Tj.

So for the transition matrix P(t), nucleotide frequencies m;, s, w3, 74 are then indeed
stationary.
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Next, fet us check reversibility. The reversibility condition (4.8) with p; ;(t) substituted by
the explicit definition (4.6) is

71',‘[6—111(51‘1}' +(1- G-M)ﬂ'j] = ﬂj[e_utéj‘,' + (1~ (’."Ut)’lr,‘].

CASE 1:¢ = j. This is clear.

CASE 2: i # j. Here, observe that
m[(1 = e™)m;) = m;[(1 — e™")mi].
Felsenstein additionally assumes

e that u = 1 so that ¢ is expected number of substitutions, and
o that base changes at different sites of the length m oligonucleotide are independent
events (this is not biologically valid).

4.4.1 Likelihood of a Tree

In the following, we assume a given data (or taxa) (a1, ... ,a,) of n sequences, all of length
m. For a given tree, we want to define

L(tree) = Pr[data | tree].

Consider the tree 0

for the data a; = CT, ay = CG and a3 = AT. By the given evolutionary model, the likelihood
for this tree can be calculated if we fill in all possible sequences for the internal nodes. By
the assumption that no insertion or deletions occur, we know that the internal nodes are again
labeled by sequences of length 2. Even with this restriction, this would lead to a combinatorial
explosion if one had to consider all possible assignments of sequences to the internal nodes.
By the independence assumption, we can consider each site independently from the others,
which drastically reduces the complexity of the calculation.
Consider as an example the following tree:

AC

d/\iz

CA AT

AN

cT CG

where we have assigned AC and CA to the internal nodes 0 and 1, respectively. By the
independence assumption of the evolutionary process, the likelihood of the complete tree
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can be calculated as follows:
AC A c
d1 dg dl d‘) dl d2
O\ ] = Pr [data ] x Pr [data ]
ds d4 dcs/\ig d’le/\d‘;
C CG
Thus, to find the likelihood for a tree with m independent sites, one has to multiply the
likelihoods for the m site-specific trees.

The likelihoods for the site-specific trees can now easily be calculated. For example, the
likelihood Pria;, = T,a; = G,a3 = T | t] for the second tree

Pr [data

C

d /\l‘z

t= A T
dmzx
T G

is given by
map2, (dy)p1,a(ds)pr 3(da)p2.4(da).

To obtain the likelihood for the tree

0
[e}
AN
1o T
T G

with unknown internal nodes, one has to sum up over all possible values for A, C, G and T for
0and 1:

Z Z TsoPso.s1 (A1 )Ds, 4(d3)ps, 3(ds)ps,.4(dy).

50 81

4.4.2  Recursive Definition for the Likelihood

The problem of calculating the likelihood is a subproblem of the procedure to find the
maximum-likelihood tree. One obtains great savings if one uses a recursive definition of the
likelihood. Fix a site [ among the sites 1,... ,m of the n length m nucleotide sequences
whose phylogenetic tree is to be constructed. The following discussion describes how to find
the maximum likelihood tree with branch lengths for the n nucleotides corresponding to the
contents at the [th site of our given n nucleotide sequences. As described in the previous
subsection, the overall optimal tree is obtained from consideration of the optimal trees for all
m sites.

Following Felsenstein [Fel81], we will show the idea for the recursive definition using the
example in Figure 4.11, depicting a topology for four taxa. Nodes are named by labeling the
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Figure 4.11 Example topology.

leaves by the taxa (ay, ... , a4), the root by 0, and the remaining internal nodes successively
as parents of smaller nodes.

For given tree £, with known nucleotides (or states) sg, 55, s¢ respectively in internal
positions 0, 5, 6, the likelihood L is

L= Pso.55(d5)Pss.a1 (d1)Pss .05 (d2)Pso,56 (d6)Pse a5 (A3)Psg.as (da)-
Summing over all nucleotide possibilities A,C,G,T for internal nodes, this yields
I=Y Y Yl
80 85 86

By regrouping (Horner’s trick for polynomial evaluation), pushing summation to the right, we
obtain the following term for L:

[ZSS Pro.ss(ds) (psm(dl )pss,az((b))]

S e
i [zsﬁ pso,se(de)(p:,as(d””ss““(d“‘)”

Then the pattern of this expression follows exactly the pattern of the tree:

where a ‘-’ represents one edge.

This gives rise to the following recursive definition of the likelihood of a tree t. Define the
conditional likelihood

Lk,s

as the likelihood of the subtree rooted at &, given that node k has state (nucleotide) s. At leaves
i»

L — 1 if the ith taxon has s at this site,
71 0 otherwise,
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and if k is the parent of i, j, then define the conditional likelihood

Lk,s,c = (Z psk.s,(dL)Li,si> Zpsk,s]' (dj)Lj,S]‘ . (49)
8 S;

With this definition, we have
L= meLos. (4.10)
sg

Proceeding from leaves towards the root as above is what Felsenstein calls ‘pruning’. Here
the 7, are the base composition frequencies at the fixed site.

4.4.3  Optimal Branch Lengths for Fixed Topology

Let t(dy,...,dy) denote a tree for given taxa (ai,... ,a,), where the distances dy, ... ,dx
are considered as parameters (i.e., a topology for (a;,... ,a,)). The next problem is to
determine distances dy, ... ,d that maximize the likelihood of this model. In other words,
we search for values for dy, . .. , d such that

L(t(dy,... ,dy)) = Prlay,... ,a, | t(dy,... . di)]

is maximal. Since this is a hard combinatorial problem, Felsenstein uses the following
heuristic algorithm. Every distance d, is considered as a parameter. When considering the
distance d,. as a parameter, the other distances are kept constant, and the value of d, is
determined that maximizes the likelihood of the given topology (under the condition that
the other distances are kept constant).

Felsenstein’s Pulley Principle allows one to place the root at an arbitrary edge of the tree.
Thus, we can start with the the recursive calculation of the likelihood at an arbitrary edge
of the tree. Hence, the Pulley Principle renders an efficient algorithmic tool allowing one to
decouple distances.

LEMMA 4.6 (PULLEY PRINCIPLE)

Let t(dy,... ,dy) be the tree for given taxa (ay, ... ,a,) with edge distances d,,. .. ,d.
Assuming the reversible Markov chain condition stated at the beginning of this section, the
likelihood of a tree t(dy, . . . ,dy) is unaffected by the placement of the root.

PROOF It is sufficient to prove the lemma for the tree t’(dl,... ,dy) of one of the
independent sites [ of given taxa. The only difference between ' and t is the labeling of
the leaves (i.e., the leaves of t are labeled with taxa (ay,. .. ,a,), whereas the leaves of t! are
labeled with the Ith site of taxa (a., ... , @,)). Without loss of generality, we can assume that
t'(dy, ... .dy) is of the form
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We prove that one can place the root of tree t!(dy, ... ,d;) at an arbitrary distance between
the nodes 1,2 without affecting the likelihood. That is, letting a! be the [th site of a;, then
L=Prld,....d, | t(d,dy,... dp)] = Prld,....d, | t'(d},d,....d})].
where
dy =d, -, dy=dy+x
holds for arbitrary 0 < x < d,. Note first that p;  (s+t) = Z pi.j(8)pj.x(t). From equations

(4.9) and (4.10), we have the following. Let sg, s1, and s3 denole the states for the nodes 0. 1,
and 2, respectively. Then

Zﬂ'eo I:Zpsom(dl L, s;:l |:ZP>U sa
ZZLI‘S‘L2‘$2SZ Wslpsl.so(dl) Pso,sg(d'))

L

w

Z Lis L, Z TsqPso,s1 (d, )pso s2 (d )
Z
s1 8o

0 .
reversible Markov

ZZLl 91L2 s27sy Zpsl EN dl p"o b’(d )

S1 82
= ZZ7‘_31Ll,le‘Z,sgpsl.sg(dl +dl)
S 82

Thus the likelihood depends only on the sum d; + d>, and so the root may be placed anywhere
between nodes 1 and 2 without affecting the likelihood. Generalizing this observation, one can
prove that the root can be placed anywhere in the tree without affecting the likelihood. |

Thus, by setting x to d; in the last lemma, we can simply omit the root. The tree in
Figure 4.11 is then equivalently represented by the unrooted tree in Figure 4.12, which is
called a 4-raxon tree.

Figure 4.12 Equivalent representation of the tree in Figure 4.11.

COROLLARY 4.7
Let t be the tree for one site of given taxa, and let
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be an arbitrary edge of t. Then

L(t) =Y waLis,Ljs;Pscs, (dr).

8y Sj

PROOF This follows directly from the proof of the Pulley Principle by assuming the root to
be between i and j. ]

Now we can maximize one single edge

] d, J

in a given topology t, keeping the other distances in ¢ fixed. Recall that, letting u = 1,
piﬁj(t) = e‘td,’d- + (1 - e_t)ﬂ'j.

By the last corollary, we get the following for the likelihood L for the tree at a single site:

L= Z Z s, Li s, Lj.sjps,.Sj (d,)

$i 8y
= Z Z s, Lis, Ljs, [e_d"dg'.,sj + (1 - e_d")ﬂsj]
sis;
= Z Z Ts; Li.s.'Lj,s,'e—dr(ss;.s, + Z Z WsiLi,siLj,sj (1~ e#d")ﬂ'sj-
8 S S 8j
=e S mLisLis+(1—e™ ™) "> my Lis Lis,ms,
s si 8

=e A4 (1-e B,

where A and B abbreviate the appropriate expressions. This holds independently for each site

I =1,...,m of the n nucleotide sequences being compared. The likelihood for the [th site is
written
Aig + Bip,
where
g=e ™ p=1l-g
and
A = Y mLisLy,,

s
B[ = ZZ”S:‘LLS;LJ}SJ ;e

8 8;

The total likelihood over all 1n independent sites is thus

m
L=]]4q+Bwp.
=1
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We need to solve for d, in order to maximize the likelihood L, or, equivalently, to maximize
the log likelihood

In L= In(Aiq+ Bip).
(=1

To find the maximal value for p, we solve for p the equation

alnL i

“4.11)
Z 41‘1 + BIP
Now
Z Aig+ Bip Z By — (B — Ai)g
Aig+Bip &=  Ag+DBp
From (4.11), we obtain
=S
&~ Aiq+ Bip
Multiplying both sides by £, we get
==y - (4.12)
p m 1:21 Aiq+ Bip
This yields an iteration formula
D = Z _ B
Aig®) + Bipth)
where ¢*) = 1 — p(*)| A calculation shows that
m m
> A+ Bp* Y > 3 g™ + By,
=1 =1
so the likelihood increases to a maximum likelihood where p = limy p'¥) satisties

(4.12). Felsenstein’s algorithm is in fact a special case of the EM algorithm (expectation
maximization) of Dempster et al. [DLR77, Wu83] and so is guaranteed to converge under
these conditions. If limy p(®) = 0 then there is no stationary point for likelihood for given
topology, so consider a rearrangement.

Now, in turn, apply this technique to estimate each of the distances in f. Keep on cycling
through until values no longer change. Since the likelihood always increases, we cannot enter
an endless cycle. The final stationary value satisfies (4.12), but is not guaranteed to be a global
maximum (it could be a local maximum). Now the likelihood for given topology is computed.
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4.4.4  Determining the Topology

The intent is then to choose that tree (model) with maximum likelihood. Letting 7,, be the set
of all binary trees having n leaves, note that

> L)
teTn
is not necessarily 1.

In order to construct an unrooted phylogenetic tree for n given taxa, start with the first two
taxa, then repeatedly add the next taxon in the following manner. After & species have been
added. the current tree has & external nodes, and hence & — 2 internal nodes,'* so as the number
of edges is one less than the total number of nodes, there are

k+(k-2)—1=2k—-3

many segments in an unrooted tree in which one could add the next node. Apply the previously
described maximum-likelihood method to determine the optimal placement of the next node,
and continue. Felsenstein states that this method examines

20— 9n + 8 = O(n?)

different topologies for the n species. Note that there is no guarantee that this is the best
topology among the exponentially many possible trees, and that the algorithm is dependent
on the order in which successive taxa are added to the tree. Nevertheless, it is moderately
comforting that there is a local application of the maximume-likelihood principle.

4.5 Quartet Puzzling

Felsenstein’s method of using expectation maximization and maximum likelihood to construct
a phylogenetic tree T has the advantage of being based on the appealing and mathematicatly
well-founded notion of maximum likelihood; i.e., the conditional probability of the species
data given T is a maximum over all trees. When there are a large number of species,
Felsenstein’s method takes too much computation time. In [SYH96|, K. Strimmer and A.
von Haeseler proposed a new phylogenetic algorithm, based on an initial application of
Felsenstein’s method for 4-taxon trees or quartet trees, followed by a clever yet simple method
of combining the quartet trees to produce an overall tree. Given n taxa along with a distance
matrix, the overall structure of the algorithm consists of the following three steps:

1. Compute (’;) maximum-likelihood trees for all possible quartets.

2. Combine the quartet trees into an n-taxon tree, which tries to respect the neighbor
relation of all quartet trees. This is known as the quartet puzzling step.

3. Repeat steps (1) and (2) many times, and output the majority consensus tree, defined
later. The consensus tree is multifurcating (not simply bifurcating).

The first two steps of the preceding are given in pseudocode in Algorithm 4.4. For a quartet
tree, such as that illustrated in Figure 4.13, where a, b have a common parent, as do ¢, d, we
write the neighbor relation N (a, b; ¢, d) to indicate the fact that a and b are nearest neighbors,
as are ¢ and d. Note that a quartet topology uniquely determines one neighbor relation, and a
neighbor relation identifies uniquely a quartet topology.

14 Recall that the tree is unrooted here, and that by internal node we mean a node whose degree is exactly 3.
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b d

Figure 4.13 4-taxon or quartet tree.

Before we present the quartet puzzling algorithm, we want to motivate the use of quartet
trees and quartet recombination. We use the terminology as used for example in [KLJ98,
BJK*99]. Let ¢ be any unrooted, binary phylogenetic tree, and let {a, b, ¢, d} be any quartet
of leaf labels of ¢. Then t induces the neighbor relation N(a, b; ¢, d) if a,b and ¢, d reside in
disjoint subtrees, i.e., if the paths between a, b and ¢,d are disjoint. Note that there is exactly
one neighbor relation induced for every quartet. Note, furthermore, that with the neighbor
relation, we induce also the corresponding quartet topology.

a

b d

Figure 4.14 Original topology for 5 taxa.

Consider the topology in Figure 4.14, and the quartet {a, b, ¢, d}. Then the induced neighbor
relation is N (a, b; ¢, d), which corresponds to the quartet tree as shown in Figure 4.13. The
quartet trees induced by ¢ for all (}) possible quartets of the label set {a. b, ¢, d. ¢} are shown
in Figure 4.15.

Now it is well known that, given the set of all induced quartet trees, one can reconstruct
the original topology [Bun71]. Many phylogenetic algorithms are known in the literature that
use the recombination of quartet trees to reconstruct a phylogeny — the method of quartet
puzzling, due to Strimmer and von Haeseler, is one of many such reconstruction algorithms.
See [KLJ98, BJK*99] for a detailed discussion. Note that we can reconstruct the phylogeny
completely only if the set of induced quartet trees is error-free. Since this is not the case in
practical applications, the algorithm must apply heuristic to yield an estimate of the correct
phylogeny. Algorithm 4.4 gives the pseudocode for this approach.

Below, we give an illustration of the quartet puzzling step and how the majority consensus
tree is constructed.
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Algorithm 4.4 Strimmer, von Haeseler [SvH96]

Input: Species 1,. .. , n (all of the same length)

for i=1 to (j) {
construct and store T;
// T; is i-th maximum likelihood 4-taxon tree
let L; be set of leaves of T;
derive and store neighbor relation N; on L;
Ni is of the form Ni(a,b;c,d)
// a,b have common parent, as do c¢,d

for k=1 to m {
randomly permute order of species to produce list
al,...,0n

for i=1 to (})

construct and store T;
// T; is i-th maximum likelihood 4-taxon tree

let L; be set of leaves of T;
derive and store neighbor relation N; on L;
N; is of the form N;(a,b;c,d)

let P be quartet on aj,a2,a03,04
for i=1 to n {

e = a
let L be set of leaves of P
if eg L

// insert species e into phylogenetic tree P
label all edges of P by 0
for j=1 to (})
if Li € LU{e} and e€ L; {
let a,b,c,e be leaves of T;
let N; be of form Ni(a,b;c,e)
add 1 to each edge label in path
from a to b in P
}
choose leaf x of P with minimum edge label
// if more than one, randomly choose
adjoin ¢ with r in tree P
// split edge of x by adjoining
// parent of e, with edge to e
}

set P, = P, and output P

}

output majority consensus of P,..., P,
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a>—<c a c b c
b d e d e d
a>—<b a b
e c e d

Figure 4.15 quartels for topology of Figure 4.14.

4.5.1 Quartet Puzzling Step

For illustrating the quartet puzzling step, we assume that we have the correct but unknown
topology as given in Figure 4.14. Note that for the quartet puzzling step, we just need the set
of quartet trees. How the quartet trees are inferred (whether by maximum likelihood or another
method) does not make a difference. An illustrating example for generating the quartet trees
is given in Exercise 5. So suppose that we are given the correct set of induced neighbor
relations for this topology, namely Ny (a, b; ¢, d), Na(a,e;c,d), N3(b,e;¢,d), Ny(a,e; b, c),
Ns(a,e;b,d), as illustrated in Figure 4.15.

Then the quartet puzziing step of Algorithm 4.4 initializes the tree P as the first quartet
having neighbor relation Ny (a, b; ¢, d). We add the next node e as follows. The next neighbor
relation to be considered is Na(a, e; ¢, d). The principal idea of the quartet puzzling step is to
add a penalty of 1 to every edge such that an addition of the new taxon e at this edge would
generate a phylogeny that would induce a wrong quartet topology for the quartet {a, c, d, e}.
To see this, suppose one were to add e at the edge starting from c. Then the resulting phylogeny
for {a,b,c,d,e} would be as shown in Figure 4.16. But this would induce the topology
N(a,d;c,e) for the quartet {a,c,d,e}, which is not the neighbor relation we want to add
(which is N»(a, e; ¢, d)). For this reason, we add the penalty 1 to the edge label for this edge.
The same holds for the edge starting from d, which implies that a 1 is also added there. When
adding the new taxon e at the edges starting from a or b, then the resulting phylogeny would
induce the correct neighbor relation for the quartet {a, ¢, d, e}, which implies that no penalty
is added for these edges.

To summarize, when we consider the neighbor relation N2(a,e;c,d) in adding the new
taxon e, then the addition of e to any edge on the path between ¢ and d (which are nearest
neighbors in N»(a, e;¢,d)) would generate a phylogeny that does not induce the correct
neighbor relation N;(a,e;c,d) for the quartet {a,c,d, e}. Hence, we add the penalty 1 at
every edge on the path from the c to d.'

Similarly, N3(b,e;c,d), Ny(a,e;b,c), and Ns(a,e;b,d) add 1 to edges of the path
respectively between ¢, d and between b, ¢ and between b, d. The leaf a then has the minimum

15 Albeit the method used there is not reasonable for practical purposes, since there are better ways to
generate quartet trees.

16 Note that the edges on the path between ¢, d may be only a subset of the edges, where the addition of e
would generate a wrong topology.
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C

b d

Figure 4.16 Wrong topology generated by adding e at the c-edge.

edge label of 0, which implies that adding e to this edge induces the correct quartet topology
for all (;’) quartets. So the node e is adjoined at a. These steps appear in Figure 4.17. The final
tree coincides with the original topology.

4.5.2  Majority Consensus Tree

We now describe how to define the majority consensus tree, a notion first investigated by
[MMS81]. The following definition was adapted from [MM81].

DEFINITION 4.8
Ann-tree T is a tree having n leaves, for which every node has a label £ C {1,... ,n}.

1. @ is not a label of any node.
2. The leaves are labeled by {1}, ... . {n}.
3. If €, €, are labels of nodes in T, and £ " €5 # O, then either {; C {, or ¢, C ¢,.

Note that the tree topology of T is uniquely determined by the subset inclusion relation,
because of the following:

e Nodes r, y labeled with ¢,, ¢, respectively are immediate neighbors if and only if
¢y, €, are comparable and there is no intermediate ¢. This means that either ¢, C ¢,
or £, C ¢ and for no other label ¢ is it the case that ¢, C ¢ C ¢y or €y C € C ¥,.

Now, suppose that Py, ... , P, are the (possibly multifurcating) trees output in the last step
of Algorithm 4.4. Each of the trees P; has the same leaves — namely, the taxa 1, ... ,n. Define
labels for all nodes of an n-taxon tree P inductively, as follows, where every label € will be a
subsetof {1,... ,n}:

o The label of a leaf node associated with the taxoni € {1,... ,n}is {i}.
e Suppose that nodes x,,... ,x, € P have been labeled respectively by €,,... .¢,
and that y is the parent of xy,... ,x,. Then label y by ¢, U --- U ¢,.

Clearly, the collection of labels on any tree P, as just inductively defined, forms an n-tree, as
defined in Definition 4.8.

Assume now that all nodes of Py, ... , P, have been labeled as just described. The majority
consensus tree M consists of exactly those nodes whose label occurs in more than half of the
P;. Itis not immediately apparent that M is a valid n-taxon tree, but this follows from a simple
observation. If nodes with labels ¢, and ¢, belong to more than half the trees P;, then there is
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a.e;c,d)
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Ni(a,b;c,d)
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Na(a,e;b,c)
<

Figure 4.17 Quartet puzzling.

at least one tree P;;, in which both labels appear, and by condition (3) we have that {; C ¢, or
£y C ¢;. Tt follows that M is an n-tree.

The method of quartet puzzling is fast, efficient, and appealing, because of its reliance
on maximum likelihood quartets. Extensions and refinements of the method can be found in
[SGVH97, Kea98].

4.6 Exercises

1. A tree can be defined as a connected acyclic (undirected) graph. Prove that an acyclic
graph is connected if and only if the number e of edges is one less than the number
n of nodes in the graph.

Suppose that T is a rooted, binary tree with the property that every internal node
has exactly 2 children. Prove that if T has n leaves, then T has n — 1 internal nodes,
hence has n + (n — 1) — 1 = 2n — 2 many edges.

2. Extend the implementation of the Gotoh algorithm (Exercise 3 in Chapter 3) in order
to compute the distance matrix for n nucleotide sequences, rather than only 2. You
are not asked to perform a multiple sequence alignment, but only to compute the
sequence alignment distance d; ; between the ¢th and the jth sequence.

The following is an example input:
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sy = addacdaaa s4 = aaacdaaa
sy = abca §5 = aabbccda
sy = abca $¢ = abbcda
s3 = aabbcda

For the previous input file, the output from our implementation is the following:
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. Experiment with J. Felsenstein’s PHYLIP Software Package as well as the demo
programs of this book’s web site. Construct a phylogenetic tree for the example
from the previous exercise.

4. Implement UPGMA, WPGMA and the Farris transformed distance method for both.

The output of our implementation of UPGMA for the data from exercise 2 is shown
in Figure 4.18

Figure 4.18 UPGMA output for Exercise 4.

. Implement the quartet puzzling step and use UPGMA to produce the quartet trees.
Consider the distance matrix

a b ¢ d e
al0 3 4 4 2
b|3 0 3 3 3
cl|l4 3 0 2 4
dl4 3 2 0 4
e|l2 3 4 4 0

This distance matrix corresponds to the topology given in Figure 4.14, where
each edge of the unrooted tree has distance 1. Generate the submatrices for the
five quartets {a, b, c,d}, {a,c,d,e}, {b,c,d,e}, {a,b,c,e}, and {a,b,d, e}. Then
generate a phylogeny using UPGMA for these five submatrices, infer quartet
topologies and apply the quartet puzzling step. Is the topology the same as that
generated by UPGMA applied to the original distance matrix?

Solution: The five submatrices for the five quartets {a,b,c,d}, {a,c.d, e},
{b,e,d e}, {a,b,c, e}, and {a,b,d, e} are
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a b ¢ d a ¢ d e b ¢ d e
al0 3 4 4 al0 4 4 2 b{0 3 3 3
b3 0 3 3 cl4 0 2 4 c|3 0 2 4
cl4 3 0 2 dl4 2 0 4 d{3 2 0 4
dl4 3 2 0 e|2 4 4 0 e|3 4 4 0
a b ¢ e a b d e
al0 3 4 2 al0 3 4 2
b3 0 3 3 b13 0 3 3
cl|l4 3 0 4 d|4 3 0 4
e(2 3 4 0 el 2 3 4 0

The corresponding trees produced by UPGMA are shown in Figure 4.19. The
induced quartet topologies are the correct one (for the given topology) as shown
in Figure 4.15.

Note that UPGMA correctly determines the topology of this example, as shown in
Figure 4.20 (UPGMA has added a root and computed different distances, but the
topology is correct).

d d e
1 1
1.75 —2 1
b e c
1.5 —E 1.5
a a b
{ab,cd} {a,cde} {bcde}
c d
1.75 1.75
b b
1.5 1.5
e e
1 1
a a
{a,b,ce} {a,b,d e}

Figure 4.19 Quartet trees produced by UPGMA for Exercise 5.
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Figure 4.20 Tree produced by UPGMA for Exercise S.
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Hidden Markov Models

The conceptual scheme for ‘learning’ in this context is a machine with
an input channel for figures, a pair of YES and NO output indicators, and
a reinforcement or ‘reward’ button that the machine’s operator can use
to indicate his approval or disapproval of the machine’s behavior. (M.L.
Minsky and S.A. Papert, Perceptrons [MP88])

In Chapter 2, we considered (time-homogeneous) Markov chains, where a system in state
i goes to state j with transition probability p; ;. Implicitly, we have assumed that we can
observe the state of the system. Suppose now that the state can no longer be directly observed
(the state is hidden), but from each state the system emits an output symbol ¢ from a finite
alphabet ¥ = {o,,... ,0n }. Moreover, the symbol g4 € ¥ is emitted with probability b; x.
provided the system is in state . If b; , = 1 exactly when k = ¢, then we have (essentially) an
ordinary Markov chain.

Algorithms for hidden Markov models infer the probabilities of state transition and output
emission from observed data, in order to derive a statistical model that generates the observed
data (in particular nucleotide data) with high likelihood. One might hope that knowledge
of a good statistical model could suggest a physical model, i.e. that the hidden Markov
model states actually correspond to physical states of the biological system, but this is not
required. There have been applications of hidden Markov models for pattern recognition
in a variety of areas: word recognition in speech processing [Rab89], cellular ion channels
[CMX™*90, FR92a, FR92b, BHH 94, KTH97], multiple sequence alignment, and recognition
of protein classes such as globins, immunoglobulins, kinases, HIV membrane proteins, etc.
[BCHM94, KBM*94], eukaryotic DNA promotor sequences [Ohl95], isochores [Chu92]
(nucleotide segments of more than 3 kb with homogeneous G + C content).

Hidden Markov models are essentially stochastic finite state automata, or equivalently,
stochastic regular grammars (actually Moore automata, since outputs are associated with
states). There is a natural generalization to stochastic context-free grammars with application
to RNA secondary structure, which uses a simple extension of the forward-backward
algorithm explained in this chapter, along with an efficient parsing algorithm (such as the CYK
algorithm or Early parser). See [BB98, DEKM98] for more details on stochastic context-free
grammars.

A discrete Markov model is a stochastic model with a finite set () of states, giving rise to a
time sequence of states

90,491,492y sqty--- -
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The Markov property states that the determination of state ¢; depends only on

Qt—ky- -+ yqt—1,

where k is the order of the Markov model. Our earlier definition of Markov chain is a first-
order Markov model.

DEFINITION 5.1 (MARKOV CHAIN)

An order-k (time-homogeneous) Markov chain (Q), M) is given by a finite set Q =
{1,...,n} of states, and an n¥*! = n x ... x n transition matrix of probabilities with
the property that forall1 < iy,... i < n,

n
> My, ikl =1
j=1

The value Miy, ... ,ix,j] is the probability of transition into state j, provided that the
system’s last k states were iy, ... ,ix; hence

Mliy, ... ik, 4] = Prige = jlge—k =11, .- ,qe—1 = k).

Note that an order-0 Markov model does not depend on its current state — for instance, the
outcome of a coin flip does not depend on whether the coin was previously heads or tails.
More formally, this is given by ({1,2}, M), where M (1) = 1 = M (2), where 1 (resp. 2)
represents heads (resp. tails). As another example, [BM93] devised an order-5 Markov model
for the recognition of intron/exon splice sites.

As depicted in Figure 5.1, hidden Markov models can be visualized by a collection of n
urns

Uy,..., Uy,

each with a different distribution of colored balls, where an unobserved magician successively
draws balls from different urns (with replacement), and we can only observe the sequence of
colored balls. Our task is to infer from the observed sequence of balls the succession of urn
drawings (states), transition probabilities between states, and emission probabilities.

Pr[urn 3 lurn 1]

O o

OO O

urn | urn 2 urn 3

Figure 5.1 HMM depicted as urn model.
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DEFINITION 5.2 (MARKOV MODEL)

Let Q = {1,...,n} be a set of n states (the urns), ¥ = {oy,... ,0.,} the finite output
alphabet, (7;) the initial state probabilities, (a; ;) the transition probabilities, and (b; ;) the
emission probabilities, so that

7 = Prlg =i,
aij = Prlg=jlge-1 =1,
bix = Prlo=oklg =i,
where the system is initially in state qo, then successively in states q1,q2.qs, ..., and the
length T output sequence is 09, 01,02, ... ,0r—1. A (first-order, time-homogenous) Markov
model is given by
M=(Q,Z, 7, ab).
In applications, we are presented an observation sequence O = oy,... 07— and, for a

fixed state set, would like to compute values for the probability matrices 7, a, b for which the
resulting model is most likely to generate the observed data. This leads to a discussion of
likelihood and how to score a model. Since we can only see the observation sequence (and not
the sequence of states), the Markov model is said to be hidden, i.e. a hidden Markov model
(HMM).

A simple but illustrative example is a variant of the coin flipping model, where three coins
are used, each with a different bias for heads. The first coin is fair, with Pr[H] = 0.5 =
Pr([T); the second coin has Pr[H] = 0.75 and Pr[T"] = 0.25; the third coin has Pr[H| = 0.1
and Pr[T] = 0.9. Suppose that a coin is chosen at random at the start, and that if the first coin
is flipped, then at the next time instant either the second or third coin will be flipped with
equal probability, while if the second or third coin is flipped, then at the next time instant any
one of the three coins will be flipped with equal probability. Thus

1/3 0 1/2 1/2 05 05
=13, a=|( 1/3 173 1/3 |, b=[ 075 025
1/3 1/3 1/3 1/3 01 0.9

It seems remarkable that one can algorithmically determine these probabilities, simply by
observing a series of coin flips.

5.1 Likelihood and Scoring a Model

Suppose that observation sequence O = og, ... ,or— is given, and that M = (Q, ¥, 7, a, b)
is a Markov model thought to generate O, and |()| = n. Recalling the definition of likelihood
of a model from Chapter 2, we have the following.
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DEFINITION 5.3
The likelihood L (M) that model M generates O is defined by

Lo(M)

Prio|M]

= Y Pr(0.pM]

peQT

> Pr{Olp. M] Prip|M]

PeQT

> Ao

peQT

Il

I

where it p = pg, ... ,pr— is a path (of length T') of states, then
A, 0 = PriO|p, M] Pr[p|M]
and

PriplM] = @poQpop@pypy * Cpy 5 pr s
Pr|O|p, M)

bPOJ'Dbqu"l e bPT—N'T—l'

For typographical reasons, we may at times write p(t) in place of p, for a path p € Q7. In the
case of many different observation sequences

O1,...,0,

(for instance, proteins of different lengths that belong to a given protein family), the likelihood
of M is taken to be the product of the likelihoods with respect to the observation sequences:

L(M) =[] Lo.(M).

The likelihood Lo(M) is sometimes called the Baum-Welch score, where often the
negative log likelihood, —log Lo (L), is taken. A likelihood is a probability value between
0 and 1, so the negative log likelihood is a positive energy score, where higher likelihood
corresponds to lower energy.

The previous definition yields a naive O(Tn) exponential time algorithm to compute
likelihood. A much better solution uses a dynamic programming technique, called the forward
method.

DEFINITION 5.4 (FORWARD VARIABLE)
(Ef(i) = P‘I'{()()., e 304 Q= ZIA[]

n

CLAIM 5.5 00(‘[) = ﬂ’ibiy,,ﬂ, and (1t+1(j) = Zi:l Qf(i)(li‘jbj7,,,+].
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X}

(VO t ot+l T
Figure 5.2 ay.41(j) forward method.
PROOF

ai1(j) = Prloo,...,0141,G41 = j|M]

= Y Priog,...,00,q = i,q141 = j,0041|M]
ieQ

= ZPT[()o»-u 20 qr = 1, gegr = JIM]bj 0,
i€Q

= Z Prlog, ... 01,9 = i|M]a; jbj,,,,
i€eQ

= Zat(i)ai’jb]"(,‘*_l.

i€Q
]

The third and fourth lines follow from the definition of conditional probability: Pr[A, B] =
Pr(B|A] Pr[A]. The recurrence relation for a¢+1(j) is illustrated in Figure 5.2.

Clearly, using an array of size nT" for the forward variables, the entire computation can be
performed in O(nT) time. It follows that the likelihood of a model

Lo(M) = PrlO|M] =Y " ar_1(i)
i€Q

can be computed in time O(n*T).

DEFINITION 5.6
The Viterbi score of a model M = (Q, %, 7, a,b) with respect to the observation sequence
O = (09,01, ... ,07r-1) is defined by

PriO|M] = max Pr(O,p|M].

Note that the Viterbi score is identical to the Baum—Welch score, except with maximum in
place of sum over all paths of states. From the definition, a naive computation of the Viterbi
Score uses exponential time O(TnT). Using dynamic programming, by a slight modification
of the forward method (with maximum in place of sum), we have an O(n?T) time algorithm
for computing the Viterbi score. From the Viterbi score, using fracebacks, one can compute
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Algorithm 5.1 Viterbi Algorithm for optimal path

(1) INITIALIZATION 8¢ (i) = m;b; 0., fori € Q.
(2) RECURSION For0 <t < T —1,and j € Q,

d1(J) = max{d(V)a;i jbj,,, }-
i€Q
(3) PATH DETERMINATION BY TRACEBACKS
ar_, = argmaxieQ{&‘_l(i)}
and fort =7 -2,...,0,

q = argmaxlSl.g,.l{ét(i)a,v,q;+l }.

that path of states, which has greatest probability of producing the observation sequence. This
is given in Algorithm 5.1.
Letting ¢* = q(,... ,q}_,. from the previous considerations, it can be shown that

Pr[O,q"|M] = max Pr[O, p|M],
peQT

so that ¢* is the most likely path of states to generate the observation sequence, given the
model.

5.2 Re-estimation of Parameters

Given an observation sequence O, consider the likelihood landscape as a function of the
model parameters 7, a, b, for fixed state set () and alphabet X. In principle, one could apply
various combinatorial optimization techniques to determine a (local) maximum likelihood.
In particular, gradient ascent (hill-climbing) Monte Carlo, genetic algorithms, and especially
quasi-Newton numerical methods, etc. come to mind. As reported in [KTH97], quasi-Newton
methods applied to maximization problems with many parameters tend to be numerically
unstable and dependent on a good initial choice of parameters.! In practice, two optimization
techniques have successfully be applied: expectation maximization from statistics (due to
Baum—Welch?), and the gradient descent method (due to Baldi-Chauvin).

Let M = (Q,X, 7, a,b) be a given model for observation sequence O = o, ... ,07_).
The Baum-Welch method re-estimates the transition probabilities @; ; to be the expected
number of transitions from state ¢ to j along all paths p € Q7 divided by the expected number
of transitions out of state i along along all paths p € Q7. To compute the mathematical
expectation, paths are weighted by the quantity 4, . Similar parameter re-estimations are
given for 7, b; . This yields the model A = (Q, X, 7.@,b) whose likelihood is better: i.c.

! J. Timmer (personal communication) has reported success of the Freiburger Physics group in initially using
the EM algorithm, then switching over to quasi-Newton methods, which then more rapidly converge.

2 Baum and Welch developed their parameter re-estimation technique, before the EM algorithm was first
proposed by Demster er al. EM is quite general and has been used successfully in many different
applications. In this section, we show how EM yields the Baum-Welch parameter re-estimates.
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Lo(M) > Lo(M). lterating this, we converge to a (local) likelihood maximum. Simulated
annealing may be added to attempt to avoid becoming trapped in a local maximum and
improve chances of convergence to a global maximum. This feature is supported by the
software HMMER, written by S. Eddy (see [Edd95]).

A newer method, due to P. Baldi and Y. Chauvin [BC94], involves a Boltzmann distribution-
like transformation of variables and the application of gradient descent to determine the lowest
energy E = —logLo(M). Recently, H. Mamitsuka [Mam97] modified both the Baum—
Welch and Baldi-Chauvin methods by incorporating a measure of deviation from rarget
likelihoods, and thereby was able to incorporate both positive and negative examples in the
training set.

5.2.1 Baum-Welch Method

Thinking of a hidden Markov model as a physical system, it is natural to ask what is the most
probable state at any given time ¢, given the observation sequence and model.

DEFINITION 5.7 (MOST PROBABLE STATE AT TIME t)
Let

w(@i) = Prlg =ilO,M]= > A4,0.

peQT p(t)=i

and for1 <t <T define g = argmax; <;<,, (1),

Clearly g; is the most probable state at time ¢. To compute v, (7) efficiently, we introduce the
backward variable 3;(7), in analogy to the forward variable o (i).

DEFINITION 5.8 (BACKWARD VARIABLE)
Be(i) = Prloty1, ... ,or-1lge = 1, M].

CLAIM 5.9 (i) = ai(;)(%l()i)'

PROOF Because the state g;41 depends only on ¢, (Markov condition), it follows that
Priots1, ... ,or—1lg =1, M) = Prlot41,... ;or—1lqt = i,00,... ,0¢, M]
and hence proving the claim is equivalent to showing that

Pr(O|M] Pr(q. = i|O, M]
= o (2)Be(7)
PT‘[qt = i,Oo, e ,01'1\” P?"[OH_l, . soT—]qu = Z.A[]

1

PT[q;, = i,()g,‘.. ,()[IA'I]pT[Ot+1,... ,()T__l'qt = i,()(),... ,()l,ﬂf]
= Prlg =1i,0|M].

Using the definition of conditional probability,

Pr[O|M] Prlq, = i|O, M] = Pr[g, =1, O|M].
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The following recurrence relation yields an O(n?T') time algorithm with O(nT') space for
computation of all backward variables.

CLAIMS. 10 d[._l(l) =1, and ﬁt(l) = Z;‘lzl (I/i,j‘[jt+l(j)bj,¢:,+|s fort <T —1.

PROOF
3(i) = Prloger,...or-1lg =i, M)

= ZPT[qf+l :jw()t-{—l?"' ,U’I‘—ll(It, :/i‘aj"[]
jeqQ

= Z Prioger, ... ;or—ilge =i, qy1 = j, Ma,
JEQ

= ZPT[OUA,-.' yor—ilqesy = j, Mla, ;.
JEQ

Since an observation at time t + 1 depends only on the state ¢;,, we have that
P‘I'[()t+1,... ,()'1'_|I(IH_1 ZJ,A[] = bj,(lr+1 Pr[()[+2‘... ,{)T_l[(]H_l = '].)\[]
from which we have

B3y (i)

Prlos1,... ,or—1|q =i, M]
n

= E(li,j}(}t+l(j)bj,t),+l

=1

for 0 < t < T — 1. Clearly this computation can be performed by dynamic programming in
O{n®T) time and O(nT) space. [ ]

By the way, note that the likelihood can be efficiently computed from the backward
variables, since
Lo(M) =Y PrlO.pIM] =Y mi80(i)bo .0, -
peQT i€eQ
The following notion is used in determining the expected number of transitions from state
i to 7, which will be applied in the Baum—Welch updating rules. Recall that

Apo = Y Pr(O|M,p] Prp|M]
peQT

= Mo H Ape,peta H bpi o0

t<T -2 t<T-1

so that 4, o is a weight for the path p, given the model and observation sequence.

DEFINITION 5.11

e (i,j) = Prlg =i,q = jlO, M]

> 4,0.

peEQT pr=iprs1=j
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We leave the proof of the following claim to an exercise.

CLAIM 5.12
77!(%.7) = PT[Qt = iaql+1 = J|01 A[]
at(i)ai,jbj,()(+1ﬁt+1(j)
Pr[{O|M]
Note that
(i) = Prlg =ilO,M]
_ a@B)
Pr{O|M]

o (1)(3 e @iyibionsr ) Bra1(3)
Pr[O|M]

= Y m(i,j)

1€EQ

Moreover, since <y (i) is the probability that the system is in s[ate ¢ at time {, it follows that
the expected number of times the system is in state 7 is Zt<T Y¢(2), and 3, . e (2) is the
expected number of times there is a transition from state 7. Fma]]y, Yoter—_1 Meli, j) is the
expected number of transitions from state i to state j.

A more graphical manner of seeing the previous relations between v, (i), 7 (i, j) and
expected values consists of summing over all paths of states satisfying a certain property,
multiplied by the weight of the path. Recall that A,  is the expression

o) L1 @ewi+ny L] oo

i<T—-2 i<T-1

for a given path p € Q7, so that A, 0 = Prlp,O|M]. Let cy(i) denote the number
of times path that p takes on the value i; ie. c,(i) = |{t < T | p(t) = i}|. Let
dp(t) ={t <T—1]|p(t) =i} and cp(i,j) = |{t <T -1 p(t) = ¢, p(t+ 1) = j}|. Then

Il

Priq. =i|O, M]
> Prig =ilp, 0, M] Pr{p|O, M)
peEQT

> Pr[plo, M].

PEQT p(t)=i

Y(2)

I

l

Thus
Sow@) =3 o) Priplo, M) = Y C’L(’)*]‘&’ ,
t<T peQT peEQT (

which is the expected number of times the system is in state ¢, given the observation sequence
a'nd model. Similarly, Et<T—1_7t(i) = ZpeQT d,?(i) Pr{p|O, M] is the expected number of
times the system makes a transition from state ¢, given O, M.
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Finally,
n(i,j) = Prlg =1i,q41 = jlO, M]

= Y Prlg =i,qu1 = jlp, O, M] Prip|O, M]
peQT

= > Prp|O, M]
PEQT p(t)=i.p(t+1)=j

_ A0

Lo(M)’

peQT p(t)=i,p(t+1)=)

Letting no (i, j) = 3o e (i, j), we have

- cp(i, j)Ap,0
7]0(1,&]) = Z P__»_7
peQT Lo(M)

which is the expected number times the system makes a transition from i to j, given O, M.
With this notation, we have a reformulation of the Baum—Welch parameter re-estimates, given
as follows:

E[number of times system begins in state ¢|O, M]

o= E[number of times system begins in any state|0, M|’
o E[number of transitions from i to j|O, M]
“/ 7 E[number of transitions from i|J, M| ’
B = E[number of emissions of o, while in state i|O, M]
" E[number of times in state i|O, M
Suppose that @, ¥ are fixed, and that || = n, |[£| = m. Given an observation sequence
O = 0y,...,0r—1 of length T, the Baum-Welch method generates parameters =, a, b for

which the model M = (Q, X, 7, a, b) has a (local) maximum likelihood.

In the updates for Ei,k in Algorithm 5.2, note that the sum is taken over those indices t,
where the observation symbol o, is o;. Note that in [RI86], the estimate 7; is defined to
be yr_ (i), while the estimate 7; = 70(i) follows from our derivation of the Baum-Welch
parameter re-estimation using the EM algorithm, given below.

It follows from the EM algorithm, about to be discussed, that Pr[O|M] > Pr[O|M] and,
unless convergence has occurred, that the likelihood of model M is strictly greater than that
of M.

5.2.2 EM and Justification of the Baum—Welch Method

In this section, we discuss the expectation maximization (EM) algorithm, and show how to
derive the Baum—-Welch parameter updates from an application of EM. The proof is not
particularly difficult, but can certainly by skipped by anyone only interested in implementing
HMMs.

Suppose that we have a many-to-one map from space X' onto space ), where X’ consists
of complete data, whereas ) consists of incomplete data. Incomplete data is what we can
observe, while the complete data consists of observable together with hidden data. This is
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Algorithm 5.2 Baum-Welch HMM method

initialize using uniform distribution
for i =1 ton
P =1
for i=1 to n
for j=1 to n
aj,j

— 1
b'*"' - m
repeat

Ti = 70(7)
a,; = M
Zt<T—1 Y (d)
Bi F= Zt<T:"z=ok %(Z)
‘ Zt<T ¥4 (%)

until Lp(M) converges

clearly related to the situation in HMMs, where y € ) might consist of an observation
sequence O of length T (e.g. a protein from a particular protein class), which is incomplete
data since the states of the Markov model are hidden, while those x € A’ that are mapped to
y are of the form p, O, where p € Q7 is a sequence of states of length T Letting M denote a
model (i.e. fixed model parameters), suppose that g(y|Af) is a conditional probability density
for the space ), that f(x|M) is a conditional probability density for X', and that

o(yIM) = / o Fl0)
TEX(y

where X' (y) denotes the set of z € X that are mapped to y. In the discrete case, we could
consider probabilities g(y| M), f (z|M) that satisfy g(y|M) = 3", c v(,) f(x|AL).? Define

Ellog f(z|M)ly, M]

Z Prlzly, M) log f (x| M).
TeX(y)

Q(M|M)

il

The EM algorithm (Algorithm 5.3) consists of two steps:
E-STEP: Compute Q(M|M).
M-STEP: Determine argmaxﬁQ(H |M).

The proof of the following theorem will not be given.

3 The application of EM to HMMs involves the continuous, non-discrete case, since the collection of all
model parameters (, a, b) is clearly not discrete.
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Algorithm 5.3 EM algorithm

initialize model parameters M,
repeat

compute Q(M|M,)

Mgy = argmaxy Q(M|M,)
until converge

THEOREM 5.13 (DEMPSTER ¢t al. [DLR77], Wu [WU83})
Under reasonable conditions (see [Wu83]), My, > M, for all t, with limit

tli_)m log Lo(My) =log Lo(M™)

for some model parameters M*, for which the likelihood is a (local) maximum.

Note that the likelihoods converge, rather than necessarily the model parameters.

Let us perform a computation for the case of HMMs. Assume that M, =
(Q, %, 71 a® bt and recall that y is an observation sequence (? of length T (incomplete
data), while z consists of a path p € QT of states together with O (complete data).
The probability f(r|M) = Prp,O|M], while g(y|M) = Ztex(y)f(ﬂM) equals

ZPEQT Pr(p, O|M]. Let A;f,)o denote the constant expression

o)
Tp(0) H a (i),p(i+1) H b,,(,,,,_

i<T—2 i<T—1
for path p € Q7. Then
My, = arg{;\axQ(AIlAh)
= arg{?ax Ellog f (x| M)y, M;]

= argmax Z Prip|O, My log Pr[p, O|M]
M

peEQT
P
= drgmax Z Z[Z((Z}Mf og Prip, O|M]
1
= ar max P O|M,] log Prp, O|M
Toiy e 3 i Olbi og Prip, Ol
1
= ar max A o log Prip, O|M
Ton) gT g Prip, O|M].

Let m;,a; , bi x be new variables for1 < 7,7 < nand1 < k < m. Let A, o denote the

multivariate function
Tp(0) H Ap(i),p(i+1) H bp(i) o
i<T—2 i<T-1



HIDDEN MARKOV MODELS 187

for a given path p € Q7. It follows that

My = argmax Z 4( ) o log A, 0.

1
Lo(My) =

Define the multivariate function

F(ﬂ-lau' sy, Q1,1 - ﬁa’n,’nﬂbl,lﬁ"' abn.m) L (AI E 4 log‘4p,0'
(@] t pEQT

We wish to determine where F' achieves a maximum, subject to the constraint )_;_, m; = 1,
m

and for each 1 < i < n the constraints Z —ai; = land Zk | bi.x = 1. Using the method
of Lagrange multipliers, define

G(’”l?"‘?’”ﬂval,ly"‘;a7l,713b1,17"‘abn‘,nh/\yalv"‘5ana/817"'7xg71)
to be
n n n
FH(zm_l)Jrza,« S a1 +Zﬂ,(§jm_1)
i=1 i=1 j=1 i=1

Computing the partial derivatives, we find

(t)
oG 1 A
or S To(n) 2w A
i O peQT pl0)=i
by OG . Al
and setting 9 = 0, we obtain 7; = —m Y peQT p(o)—i 5 From the latter together

with the constraint ZL m; = 1, we obtain
Lo(My)
A=— A( 4“) =—-——"=-1
L"(M‘) Zl EQTZP(O) e peXQ:T Lo(31:)
It follows that

__ 1 w _ 1
- Lo(ﬂft) Z ‘AP'O - Lo(]\] ) Z PT[P, 0]1‘1[]

PEQT p(0)=i Y peQT p(0)=i

i

By the same reasoning, we obtain justifications for the other parameter re-estimations from
the Baum—Welch algorithm.

5.2.3  Baldi—-Chauvin Gradient Descent

Following [BC94], introduce a variable transformation by defining new variables w; ; and v; .
so that the following Boltzmann-like distribution holds:

6'\“"""’

aij = W7 3.
/\l/,'_c

bic = c (5.2)

Sperir



188 COMPUTATIONAL MOLECULAR BIOLOGY

For a finite training set O!, ..., O", of observation sequences indexed by s, where the length
L sequence O° = o5, ... ,0} _,, define the increments
v Id
W = ol Auy,
e = e
where

AUJ,J = Ca Z Z [711(27.]) - ai,j}yl(i))v

s t<L,

Avi, = Cbz Z [7¢(3) = bieve(3)],

s t<Ls.0}=c

and C,, C}, are appropriate constants.

Unlike the case with the Baum-Welch algorithm, updates can be performed on-line, in
the sense that the increments w;'$™, v;'?™ can be computed each time, after reading a new
observation sequence O (i.e. in the sth step, O = OF). In the case of on-line parameter re-

estimation, the updates are given by

L(M)

Aw;j = C, LoD t<ZL e (2, 5) ~ @i jve(i))
= Cq L( ]([) [no(i,J) = ai,jno(i))
L(AI) . .
AI/;‘,C = Lo(f\f) t<L§:03 [W‘t(l) - bi,("Yl(z)]q

where we let 710 (i) denote 3, o 1o (4, k).

A disadvantage of the Baum—~Welch method is that in the parameter updates, if any
probability is set to 0, then this probability will never later be changed, i.e. 0 is absorbing.
In the training set of observation sequences, it certainly can happen that certain transitions
or emissions have probability 0, yet such transitions or emissions might indeed appear in
test sequences, which should test positively. This disadvantage is not present in the Baldi-
Chauvin method, since the transition and emission probabilities are defined in a Boltzmann-
like manner. Another advantage of the Baldi-Chauvin method is that parameter updates
can be made on-line. A disadvantage of this method lies in the choice of constants Cy,Cy,
corresponding to step size in the gradient descent method. Gradient descent, unlike the EM
algorithm, is a heuristic, which may not converge, depending on the constants.

Justification of Baldi-Chauvin Updates

Let M = (X,Q, m, a, b) be a given HMM having output alphabet £, state set Q@ = {1,... ,n},
state transtition probability matrix a, emission probability matrix b, and initial state probability
vector 7. Given a sequence of distinct observation sequences Oy, ... , O, of possibly varying
lengths, where O = 09, ... ,01,, 1, the likelihood of model M is the product

M) = ] Lo, 4
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of the likelihoods that M generated each individual observation sequence. Define the energy
E = —logL(M). Our goal is to find model parameters m,a,b for which energy is a
minimum, by using the gradient descent method, an iterative, greedy algorithm, where at
each step we move in the direction of steepest descent on the likelihood landscape. If |Q} = n

and |X| = m, then thinking of E as a multivariate function of the independent variables

Tlyens 77rn)a1,17-~' 1a1’l,nabl,la"'

Z?:l ai; =131,

,bp,m subject to constraints Y, m; = 1,and fori € Q,
b; x = 1, the gradient descent method yields increments

0E
A?Ti _Cam’
OF
Aai,j —Caai‘j y
OE
Ab; —C .
* Cabi.k

Instead of considering E as a function of model parameters 7, a, b, following [BC94] we
consider E as a function of 7, w, v, having made the change of variables as given in equations
(5.1) and (5.2). We are thus led to compute the partial derivatives

O 1 OL(M)
0w j S L(M) Qwiy
OE 1 OL(M)
ov; i CL(M) Ovig

Concentrating now only on the equation for 5= oF by the chain rule, we have

0 L(M) _

8 L(M) da 1 53

Bwi J

6(11,1\‘ &uw

By the product rule for differentiation, we have

BL(M)

1 8Lo(M)

da; LW)Z&L (M) Da;x

and, recalling the previously defined weight A, o of path p with respect to observation

sequence O and model M,

Ap,0 = Ty(0) popiern 1] bp(t) o
t<(0)-1 t<b(O
we have
OLo(M) 04,0
0a; j e ghO) Bai
Z cp(i,k)Ap 0
peror Tk

no(i, k)
" o(M).
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Here, we use the previously defined notation, where

no(i,k) = ) Prlge=1i.qu1 = k|O,M]
t<€(O)—1
PEQ!@ Lo(M)

and ¢, (4, k) is the number of transitions from ¢ to k made in the path p, i.e.
ep(i k) = {j <lo-1[p(j) =t,p(G + 1) =k}

Thus

OL(M) _ Z azk)L ()
ik

(')(Li,k

|
R
S
o =
~
N
>

We now compute gz: by distinguishing whether or not k = j.

CASE l: k=
da;; 0 eMi
Gw,-,j - aw,-,j Z[ erwi.e
/\8’\“" i /\ekw, jeAwil
- Zl’e/\wi'l Z edwi, [)z
)\ez\w;,,- /\w,_]
= AN B | [P
(Z[ eM"') [ fo’)‘w"']
= )\ai,j(l - a,;j).
CASE2: k #j

8(li,k . 0 C)W""
Owi,j Owij \ 3o M
—/\e’\“">f€’\“’i~'°

= ——/\aiyja,-,k.
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Thus
OFE L(M) . Aai (1 — a; ;) : —Aa; ja k
o 71 VA no(t, — =+ no(i, k)| | ——
Ow;,j L(M) zo: to(i-3) ai,j gj;’w( ) @ik

= “A1-ai)) Y no)+XY.> noli,k)ai,

(@] k#j O
= A o)+ AN D aimolisk)
&) keQ O

I

=AY noli ) + A aimoli),
O (@]

where we let no (i) abbreviate ZkeQ no(i, k). Finally, using the heuristic of gradient descent,

oF

Bwi,)-

—CAY noli,j) = CAY_ aijmi(0),
(@] o

Aw,-,j = -C

and, with a similar derivation,
OF
av,',k

= —D/\Z Z [7e(2) = bikye(4)].

O t<t(O0), 0=k

AVi,k = -D

This concludes the justification of the on-line updates; a similar argument justifies the off-line
updates.

5.2.4 Mamitsuka’s MA Algorithm
The likelihood of sth sequence with respect to a hidden Markov model M is
ps = Pr{O°|M].

Let p} be the target value likelihood of the sth sequence. Define

and

dmax = lOg (E[:]_ax')

min

where p7 .. (resp. py..,) is the maximum (resp. minimum) of the p%.
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Goal
After training, d, should be 0, so our plan is to minimize the error distance

2
o o~ )

s max

in parameter re-estimation. To this end, for a finite training set of sequences indexed by s,
define

Awj = c,,z( Ry D (i 5) = ai (i),

max t<£
d . .
AI/,"C = Z @__s—) Z ['Yt('l) - bi.cﬁ,"t(l)]a
max <ty 09 =c

with the on-line increments for parameter re-estimation given by

Aw,"j = C Z

i<[ ( max
ds
(R — 42

where the sequence Oy has just been read. In the sugar transport protein example given in the
next section, Mamitsuka sets

1 0.01¢,
ph= (—) ~ (0.970487)"

—dz s (i, 5) — ai (@),

AVi,c =S C z ['}’I(Z’)—bi,(‘ﬂﬂ(i)]w

t<bs,0i=c

20

for positive training examples and

1 1.99¢,
Pt = (%> ~ (0.002576)"

for negative training examples, where £ is the length of the sth sequence.

Justification of Mamitsuko’s Updates

Let LY, be the target likelihood for the observation sequence O, and define

L*
1. — | O ,
do & {L@(M)
d 2
go = 1—( e )
dnmx
— djm_x_ié’
o d? '

max

where

L*
dnax = log ( 'l'ax>
" Ll]lln

= log (max{Ly | O}) — log (min{Lg, | O}).
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Define the energy E by

£ (I

= ) (~loggo).
&)
Then
OFE
Awi,j = C@ww
0
= —Co— —lo
Bwr (; ggo)

_ 610&90 aaz k
= Ca Z Z Oa; &u”
— max —2 ado aai.k
= G2 (2) (72) (st
aLo(]U) 3(1,‘ k)
= Ca :
ZO:Z ( max - O) (LO(]M)> ( 6alk 6“)1',_}'
i.k) da; k
= Ca I: ( L M . ):l
I3} {( max ) % Lo(M) Qi k o )awi,j
_ ¢ {( )3 etk k)aam]}
o max - d k a; awa,_}

d
= ACq Z (d,z,,:;—(—vd%) (Mo (i, k) = ai jno(i)] .

A similar argument justifies the expression for the increment Ay .

5.3 Applications
5.3.1 Multiple Sequence Alignment

Hidden Markov models have found applications in multiple sequence alignment. The idea is
to build a linear hidden Markov model having 3n states, where n is the average sequence
length in the training set. The training set of sequences to be aligned is treated as a collection
of observation sequences. There are n matching states along the backbone, and for each such
matching state an additional insertion and deletion state, so that variable-length sequences can
be accommodated. Once a hidden Markov model is trained, each sequence from the training
set can be scored using the Viterbi algorithm, which then gives rise to an appropriate path of
matching, insertion, and deletion states. Thus the sequence is aligned against the stochastic
model.

In Figure 5.3 a linear hidden Markov model is depicted for the multiple sequence alignment
of sequences whose average sequence length is 4. There are 6 matching states, of which mq
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Image not Available

Figure 5.3 Linear HMM for multiple sequence alignment. Adapted from [DEKM98] and [Wat95]
with permissions from Cambridge University Press and CRC Press, Boca Raton, Florida

and ms are respectively the beginning and end states, 5 insertion states, and 4 delete states.
‘The delete states have no emissions, the insertion states g, . . . ,i4 have emissions, g and ms
have no emissions, while the-backbone matching states m,, ... , m4 have emissions. Suppose
that we wish to align the sequences GGCT, ACCGAT, and CT. After convergence of the Baum—
Welch algorithm, suppose that state transition probabilities and emission probabilities have
been computed, and that the Viterbi path for GGCT is my, my, ey, ms, my, ms;, for ACCGAT it
is mo. ig, my, da, ms, iz, iz, ing, ms, and for CT itis g, my, ds, d3, my, ms. Then we obtain
the following multiple sequence alignment:

aC-CgacTl
GGCc . . T
c--. .7

Multiple sequence alignment software using HMMs has been developed independently

by P. Baldi, Y. Chauvin and V. Mittal-Henkle (HMMpro at www.netid.com), S.

~Eddy (HMMER www.genetics.wustl.edu/ eddy), and K. Karplus er al. (SAM

www.cse.ucsc.edu/research/compbio/sam.html). Since the application of

- HMMs to multiple sequence alignment is already well-described in the literature, especially

in the monographs [BB98, DEKM98] and in the original papers [KBM ™94, Edd95], the topic
will not be further discussed here.

5.3.2  Protein Motifs

In [Mam96, Mam97] H. Mamitsuka studied the problem of correctly identifying sugar
transport proteins (STP), whose consensus in the database PROSITE is the 12—14 amino acid
sequence

[LIVMSTA] - [DE] —« — [LIVMFYWA] -G — R — [RK] — £(4,6) - G

"~ In the SWISS-PROT release 29.0 database, 49 sugar transport proteins have the previous motif,
while 19 non-sugar transport proteins also have this motif (i.e are false positives). Mamitsuka
“compared the training times and error distributions for four types of hidden Markov models
as applied to the prediction problem for STPs, where each model has a different algorithm
" for parameter re-estimation (Baum-Welch, Baldi-Chauvin, and Mamitsuka’s modification of
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Image not Available

Figure 5.4 Mamitsuka’s HMM for sugar transport proteins. Reprinted from [Mam96]. Copyright Mary
Ann Liebert, Inc, New York.

each that allowed positive and negative examples to be used in the training set). As earlier
mentioned, in applying Mamitsuka’s algorithm,

1 0.01¢,
()

1 1.99¢,
(3

for negative examples. One of the resulting HMMs from [Mam96, Mam97] after training on a
randomly selected subset of STPs and non-STPs both having the motif is given in Figure 5.4.

for positive examples and

5.3.3 Eukaryotic DNA Promotor Regions

Another application was given by U. Ohler [Ohl95], who trained HMMs to recognize
promotor sites in eukaryotic DNA. Typically, a promotor contains a binding site for RNA
polymerase, the so-called TATA box,* as well as binding sites for proteins that control the
binding of RNA polymerase, though genes for housekeeping proteins (constantly expressed)
have no corresponding TATA box. The promotor region is depicted in Figure 5.5, which is
taken from [Oh]95].

Here, one notes the following regions:

e CAP signal: about 8 bp
(T)CA(G)T(C)(T)(T)

4 TATAAT is the consensus sequence for E. coli, while TATAT is that for yeast. See Bucher |Buc90] for more
information on TATA box structure.
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swo 404 413 426 431 446 459 479 500
1 N [ 1 r ]
— 1 J N R
GC CAAT TATA CAP

Figure 5.5 Promotor sequence in cukaryotic DNA.

e TATA box: usually between 36 and 20 bp before transcription, length about 15 bp,
most significant 8 bp consensus as follows:

|G/C]TATA[A/TJA[A/T]
o GC element: 14 bp, no fixed position or orientation, possibly many copies (0 to 5)
GGGCGG
e CAAT element: 12 bp, between 120 and 60 bp before transcription
[A/G][A/G]CCAAT
In [Oh195], Ohler defines a regular grammar can be given for (the reversal of) a promotor.

With this approach, HMM modules can be defined for the different terminals of the following
grammar:

promotor —  downstream upstream
downstream —  CAP region TATA region
CAPregion — CAPsignal | CAP waste
TATA region —  TATA spacer TATA box | nonTATA spacer TATA waste
upstream  —  GC element upstream | CAT element upstream |

GCrev element upstream | CAATrev element upstream |
spacer upstream | €

A large HMM can be connected from HMM modules by serial, parallel and recursive
connections, provided one can estimate entrance probabilities for the modules. Let M, M,
be HMMs with initial state probability function m;, m,, state transition matrices a;, aq, and
output symbol probability matrices b, b. Assume that A, has states 1,... ,n,, while A,
has states 1,... ,n». Assume that M| has the designated termination state ;.

Serial connection Define the serial connection M = M, &M, by first setting the state set
to{l,....n; +ny}and

G (A0
Lo 4 )
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where A; (resp. As) is the transition probability matrix for M; (resp. M), and similarly B,
(resp. By) is the emission probability matrix for A} (resp. Ms).

In a similar, but more complicated manner, a parallel M;|AM> and recursive connection
of HMMs is defined. With the resulting connections of HMMs, Ohler successfully trained
and tested his program on promotor sequences for eukaryotic DNA, and has used improved
versions of his program for promotor sequence prediction on Drosophilia in the Berkeley Fly
Project (personal communication).

Hidden Markov models are trained to predict whether a protein is likely to belong to a
certain class of proteins (as in sugar transport proteins), where a promotor region lies in DNA,
and trained Markov models have been used to recognize open reading frames [BM93], etc.
An important topic not covered in this text concerns neural networks — see the excellent
monograph by P. Baldi and S. Brunak [BB98] for applications of neural networks, hybrid
models (HMMs and neural nets), etc. in computational biology.

Almost invariably, mistakes will be made in any machine learning procedure, and one
speaks of the specificity and sensitivity of a method. Taking the example of recognizing
intron/exon splice sites, 100% specificity means that only true splice sites are recognized (no
false positives, i.e. if the method returns YES, then the site is a true splice site), while 100%
sensitivity means that all splice sites are recognized (no false negatives, i.e. if the method
returns NO, then the site is not a true splice site’).

5.4 Exercises

1. Use the SAM (Sequence Alignment Modeling) software from Santa Cruz to perform
a multiple alignment of several tRNAs from M. jannaschi.

2. Write a hidden Markov model to find the emission, state transition and initial state
probability matrices for the following five sequences of observables. The characters
emitted are A, G, C, T, and the observed data consists of the following 5 observation
sequences:

AGAAAGGTCTAGTGTTTGGTGATGTATCTATAGAGGGACG
GGTCCTTTCAATATCAGTTGAATATGATGTGAGTGAGTTG
GGGGGGTGGGGCCTTGATAAGAAGGGCTGTCTTTTGGTAG
GTACCGGTATAGAAAAGACCGGATTCGAATTAATAATAAG
TATTACTTGTTCAGCGTTATAAGATTCAGGAGGAGGTGTG

To check the output of your program, you should know that the above obervables
were generated from the initial state probability matrix

0.5
r=[ 025 |,
0.25

5 This assumes the method always returns an answer. Las Vegas procedures always return a correct answer,
but in certain cases do not return any answer.
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the state transition matrix

0.5 0.25 0.25
a=1 025 035 0.40
0.25 0.75 0.0

and the emission matrix

0.25 0.25 0.25 0.25
b={ 025 035 0.10 0.30
0.25 025 0.0 0.50

Your program should implement the Baum—Welch parameter estimation, and in
each re-estimation should print out the model likelihood, so that you see that the
likelihood converges to a maximum.

3. Modify your program from the previous problem, by implementing the Baldi-
Chauvin method for re-parameterization. Compare accuracy and runtimes for both
methods on the data from the previous problem.

4. Prove that it a set C' C 2 is partitioned into {C, ... ,C,}, where C; N C; = @ for
i # j.then Pr(4|C] = Y0_ (Pr{4]C;] Pr[C;|C]). Use this to give an alternative
justification for the recurrence relation 3, (i) = ZjeQ Berr1()aijbjon,, -

5. Prove that

m(i,j) = Prlg =i q41 = jlO, M]
o a(aibjo,, B (d)
B PrlO|M]

6. A context-free Lindenmayer system or L system, is specified by a context-free
grammar G = (V, X, R, S), with the unusual requirement that when a grammar
rule such as 4 — « is applied to a sentential expression w € (V" U L), then
all occurrences of A must be replaced by . In contrast, words in a context-free
language are generated by replacing (non-deterministically) one occurrence of A by
«. L systems were originally conceived as a mathematical model to explain plant
leaf and stem formation, and have found applications in graphical representations
of plants. Stochastic L systems are specified by context-free grammars along with
probabilities for rule application. Using ideas from the algorithms for inferring
probabilities for stochastic context-free grammars [BB98, DEKM98], describe and
implement an algorithm to infer probabilities for stochastic context-free L systems.
HINT Extend an efficient parsing algorithm for context-free languages (such as the
CYK algorithm or Early parser) to L systems, and generalize the forward-backward
algorithms. See [JL87] for more on L systems.
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Structure Prediction

In fact, being able to predict a protein’s structure from its amino acid
sequence is one of the most important unsolved problems of molecular
biology and biophysics. Not only would a successful prediction algorithm
be a tremendous advance in the understanding of the biochemical
mechanisms of proteins, but, since such an algorithm could conceivably
be used to design proteins to carry out specific functions, it would
have profound, far-reaching effects on biotechnology and the treatment
of disease. (M. Mitchell, An Introduction to Genetic Algorithms 1998
[Mit98])

The protein structure prediction problem, also called the protein folding problem, is one of
the major unsolved problems in computational biology. The problem consists of predicting
the tertiary structure (in the following also called conformation) from the given amino acid
sequence. There are three general approaches for attacking protein folding: namely molecular
dynamics, protein structure prediction, and homologous modeling. Protein threading can be
interpreted as a variant of homologous modeling.

In molecular dynamics, one simulates the actual folding process of a protein, considering
mean force fields acting on all atoms in the constituent amino acids, as well as atoms of the
solvent (water). Starting with a random initial conformation, one calculates motion vectors
for the atoms according to different forces (covalent bonds, electrostatic forces, van der Waals
forces, hydrogen bonds between residue atoms and water molecules, etc.). The equations
used in calculating the motion vectors are only valid over a short time interval, typically on
the order of 10™1® seconds. This simulation step is then iterated until a stable conformation
is found. Computing motion vectors, while taking into account all atoms of the protein as
well as those of the solvent, is itself a time-consuming step. Since proteins typically fold in
milliseconds to seconds, this results in a huge number of sampling steps over a large number
of atoms before convergence can occur. For this reason, with current computing resources,
molecular dynamics cannot be used for de novo protein structure prediction.

In the protein structure prediction approach, one considers a fixed energy model E :
Q2 — R, where Q is the set of all possible conformations. The native structure is defined
to be the structure that has minimal free energy according to the energy model (i.e., that
conformation w where E(w) is minimal). There are different approaches in the definition of
energy function. Several results strongly indicate that the structure prediction problem is NP-
hard (see e.g. [NM92, NMK94]). For this reason, simplified models have been introduced, and
used in investigating general properties of protein folding. Our discussion of protein structure
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prediction is restricted to lattice models.

A third approach is protein threading. The idea behind this knowledge-based approach
is that, since de novo protein structure prediction using physical/chemical energy functions
appears currently intractable, one instead computes statistical pseudo-energy functions from
frequencies of certain amino acids known to lie in proximity to others in conformations of a
representative sampling of the protein database. Protein threading is the attempt to align in
parallel both the sequence and the structure, by comparing a new protein P> with a known
protein () (i.e., one where both the sequence and the structure are known), assuming that
P and @ are related. as tested, for example, by using sequence alignment. Though protein
threading was originally thought to be a simpler model, following [LS96, AM97] we will
show this problem to be NP-complete.

Structure prediction is important not only for proteins, but also for RNA and DNA.
RNA molecules perform certain catalytic functions, which are the consequence of their
specific three-dimensional structure. This structure is encoded in the nucleotide sequence of
the RNA molecule. While RNA tertiary structure prediction appears as difficult as protein
structure prediction, there are dynamic programming algorithms for the simpler problem of
RNA secondary structure prediction. Even the three-dimensional structure of DNA appears
to be important for the functionality of the cell. In particular, the twist and writhe of a
DNA molecule dictate in part the site where strand separation is initiated in replication and
transcription events. In this chapter, we consider these various aspects of structure prediction.

6.1 RNA Secondary Structure

As mentioned in Chapter 1, ribonucleic acid has hydroxyl groups connected to the 2’ and
3’ carbon in the pentose sugar, allowing for more hydrogen bond formation in single-
stranded RNA than DNA. From extensive hydrogen bonding, single-stranded RNA is capable
of forming complicated three-dimensional structures, capable of certain catalytic functions.
Primary structure of RNA is the nucleotide sequence, secondary structure is the particular
planar graph defined by covalent and hydrogen bonds (e.g., the familiar cloverleaf secondary
structure of tRNA), and tertiary structure is the three-dimensional structure (in tRNA, a
three-dimensional L structure). Though reliable prediction of tertiary structure for RNA is
not currently possible, for reasons similar to those behind the difficulty of predicting three-
dimensional protein structure, there are relatively good RNA secondary structure prediction
algorithms.

DEFINITION 6.1
The secondary structure of an RNA sequence of length n is an undirected graph G = (V| E),
whereV = {1,... ,n}, E CV x V, such that

(i,j) € E < (j,i) € E.

. (V1I<i<n)(i,i+1)€ El

. For1 < i < n, there exists at most one j # 1 + 1 for which (i, j) € E.
L If1<i<k<j<n,(i,j) € Eand (k,f) € E, theni < { < j.

w N~

RS

Condition 1 ensures the graph is undirected, Condition 2 represents the covalent bonds in the
sequence, Condition 3 ensures the formation of base pairs, rather than triplets, and Condition 4
disallows knots and pseudoknots.
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There is a 1-1 correspondence between RNA secondary structures and well-balanced
parenthesis expressions, where the balancing parentheses correspond to base pairings via
hydrogen bonds. For example, the following RNA sequence is placed above a parenthesis
expression:

AGAAACAUCACAU
(... .o

This notation indicates that there are base pairs (1,13) with A, U, (2,6) with G, C, (8,12)
with U, A. Here is another example, where nine possible secondary structures are given for
the palindrome ACGUACGU:

ACGUACGU

M. Waterman [Wat78] was one of the first to initiate the study of combinatorics of
RNA sequences, and, by using generating functions and a deep theorem due to Bender
concerning asymptotic combinatorics, Stein and Waterman [SW78, Wat95] and, building on
this, Hofacker, Schuster, and Stadler [HSS98] were able to successfully answer such questions
as the following: How many possible secondary structures are there in a sequence of n
nucleotides, where stacked base pairs have minimum length of ¢ and hairpin loops minimum
size of m? The fact that there are exponentially many such structures points out the necessity
for structure prediction algorithms not only to output the optimal structure, but suboptimal
ones as well. As well, the combinatorics of RNA secondary structures was the starting point
for the development of an interesting theory of neutral networks by P. Schuster and co-workers
[RSS97, Sch96, SFSH94, BB96, FST+93].

Suppose first that for a sequence of length n, any nucleotide can form a base pair with
any other nucleotide, subject to the above rules for secondary structure formation. For this
hypothetical example, define S(n) to be the number of secondary structures on {1,... ,n},
and let S(0) = 1.

THEOREM 6.2
S(1)=1=5(2) and

n—2
Sm+1) = Sm)+ > Sk)Snm-k-1)
k=0
n—2
= Sm)+Sn-1)+Y_ Sk)Sn—k-1).
k=1

PROOF This is by induction on n. Clearly S(1) = 1 = S(2). For the inductive case, there
are two subcases.
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CASE |: n + 1 is not base-paired. In this case, there are S(n) possible structures.

CASE 2: n + 1 is base-paired to nucleotide j, for 1 < j < n — 1. In this case, secondary
structures can independently be formed on the former part {1,...,j — 1} and latter part
{j +1,...,n}, leading to a contribution S(j — 1)S(n — j). Thus

n—1
Sm+1) = Sm)+ Y SG-1Sm-j) (6.1)
Jj=1
n—1
= S(m)+Sm-1)+»_ SG-1)Sn-j) (6.2)
j=2
n—2
= Sm)+Sm-1)+Y Sk)Sn—-k-1). (6.3)
k=1

]
A small recursive program yields some initial values of S(n):

no o1 |2]3][4]5]6]7[8] 9|10
Se) [T 1 (248173782185 423

While a recursive program for S(n) takes exponential time, and cannot even compute S(25)
(on a 450 MHz Pentium II), a dynamic programming implementation takes quadratic time
and immediately yields S(25) = 226460893 and S(40) = 215440028338359.

Erdos and DeBruijn long ago began looking at closed formulas for such recurrence
relations, and in particular for the convolution defined by

n—1

g(n) =Y g(k)g(n — k)
k=0

sothat g(n) = ¢(0)g(n)+g(1)g(n—1)+...+g(n—1)g(1), with base case g(0) = 1 = g(1).
Their result is that

g(n) = 2—1:7 (2"> = 0(4").

n

This should be compared with the Catalan numbers

1 2n 4n
n = n+1<n) =0 <W)’

known to be the number of different binary trees on n nodes. The following simple proposition
shows that there are exponentially many secondary structures.

PROPOSITION 6.3 (M. WATERMAN [WAT78])
Forn >2.5(n) > 272,

PROOF As before,

n—2
Sm+1)=Sm) +Smn-1)+Y_ Sk)Sh—k-1), (6.4)

k=1
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and so, replacing n + 1 by n, we have

n—3

Stn)=Sn-1)+Snm-2)+>_ Sk)S(n—k-2). (6.5)
From (6.5), we have .
Sn+1) = S(n)+Sn-1)+Sn-2)8(1)+ 1§S(k)5(n —k-1)
k=1
= Sm)+Sn—-1)+Sn-2) +n2_:35(k)5(n—k— 1). (6.6)
k=1

Clearly S is a monotonically increasing function, so S(n — k — 1) > S(n — k — 2); so it
follows from (6.5) and (6.6) that S(n + 1) > S(n) + S(n). ]

Thus there are exponentially many secondary possible structures on a sequence of length
n, when ignoring the requirement that base pairs must be Watson—Crick or GU. By using
generating functions and Bender’s Theorem, in [SW78, Wat95] the exact asymptotic solution

s(n) ~ V 15473 48_:\/571—3/2 <____3 +2\/5>

is obtained. Recalling that the golden ratio o = 1_12\/_5 ~ 1.618034, the Stein—Waterman
result states S(n) has growth rate @(M).

3/2

By imposing a restriction on the mininmum number of unpaired bases in hairpin loops and in
helices (these terms are defined below), one obtains a different asymptotic value for S(n) that
is smaller than 2™. This is an important starting point for the mathematical evolution theory
involving neutral networks developed by P. Schuster and co-workers. Specifically, define a
mapping from the sequence space of all 4* RNA sequences of length n into the shape space of
all secondary structures for such sequences. This mapping can be construed as a mapping from
genotype to phenotype, and is onto, many—one, even when sequence space consists of all 2"
many purine—pyrimidine sequences of length n, provided that hairpins have at least 3 unpaired
bases, and that ladders have a minimum number of stacked bases. One might ask what the
expected Hamming distance is between sequences, whose secondary structures are distinct.
This has pertinence for evolution theory in that one assumes that the landscape of all secondary
structures is necessary for various functional properties of RNA (e.g. catalytic functions in the
preprotein RNA world). To this end, for a fixed secondary structure ¢, consider the set 1; of
all RNA sequences s of length n, whose optimal secondary structure is that of ¢t. (We shall
shortly give an efficient algorithm to compute this optimal structure.) Define an edge between
sequences s, s’ € V" if their Hamming distance is 1 (i.e. they differ by one nucleotide), and let
E; be the collection of all such edges. The undirected graph G; = (V}, Ey) is called the neutral
network associated with secondary structure ¢. Using the theory of random graphs, one can
show certain properties about neutral nets: when they are likely to be connected, etc. For more
on the fascinating topic of neutral networks, see [RSS97, Sch96, SFSH94, BB96, FST+93].

The previous calculation of S(n) can be made more realistic by requiring allowing base
pairings only for Watson—Crick base pairs and GU pairs — this is done in our C program
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that lists all possible secondary structures for a given RNA sequence. Let B(s;,... ,s;) be
the number of secondary structures for the sequence s,... ,s,, under this more realistic
assumption. Then

n—1

R(siooosup) = R(sieoosn) + 3 R(stoo,8j21) + R(sjar. ... s)bp(ion + 1),

J=1

where bp(j,n + 1) = 11if s, 5,41 can base-pair, otherwise 0. Again using Bender’s result,
assuming that

p = Pr[s; and s; can base-pair]
where 1 < ¢ < j < n+ 1, Waterman [ Wat95] derives the expected number

"

E[R(n)] =~ -y

of secondary structures on RNA sequences of length n having probability p of base-pairing,

1+ /1+45)* 3(1+4/p) 4
where 3 = VP and ¢ = 20D
4 2y/mp3/4

An easy modification of the recurrence relation for S(n) yields a recurrence relation for the
maximum number Af; ; of base pairs in the subsequence s, ... , s; of a given RNA sequence
S1,--. .8, First, define the boolean function bp(x, y) that recognizes whether nucleotides
£,y can base-pair, by bp(x, y) = 1if r, y can base-pair, else 0. Clearly, we have the following.

THEOREM 6.4

j\f,‘.j = 0,ifj<i+1

M;j+1 = max {A[,‘J,i<l}l<aj'_l {(Mie—1 + 14+ My bp(3[73j+1)}} .

PROOF  As before, in considering M; .1, there are two possible cases: either s;,; does
not base-pair with a nucleotide of s;,... ,s;, or s;4, base-pairs with s¢. In the latter case,
we have the term M; ¢y + 1 + My . This allows a dynamic programming approach to
computing the maximum number of base pairings in an RNA sequence, a task first performed
by Nussinov and Jacobson [NJ80J, and later refined by numerous authors, leading to robust
programs of Zuker [ZS84, Zuk] and of Schuster’s group in Vienna RNA Package [HFS*]. B

To refine the algorithm of Nussinov-Jacobson to compute the optimal secondary structure
for a given RNA sequence, we need to categorize certain RNA motifs, as given in the
following definition. See Figure 6.1 for illustrations of certain motifs.

DEFINITION 6.5
LetG = (V| E) be a secondary structure on sy, ... ,Sy.

1. i is paired if there exists j # i £ 1 with (i, j) € E.

2. The subsequence (i + 1,...,j—1)isaloopif(i,j) € E,andalli+1,...,j—1
are unpaired.

3. The subsequence (i +1,... 3 — 1) isabulge ifi, j are paired,i +1,... ,j — 1 are
unpaired and (i, j) ¢ E.
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1 i+1 ? k
JJ—1 j m
helix bulge
?
i k
\ ‘ m
hairpin interior loop

Figure 6.1 RNA secondary structures.

4. An interior loop is given by two bulges (i + 1,... ,j — 1) and (k + 1,... £ = 1),
suchthati < j <k < fand(i,f) € Eand (j, k) € E.

5. A join is a bulge (i, ... ,J) such that for all k < i, (k,£) € E implies that { < 1,
and forallk > j, (k,¢) € E implies that{ > j.

6. A tail is a subsequence of the form (1,... i), where 1,... ,i are unpaired, and
eitheri = n ori+ 1 paired, or a subsequence of the form (i, ... .n), wherei,... ,n
are unpaired, andi = 1 ori — 1 is paired.

7. A helix or ladder is given by two subsequences (i +1,... ,i+J), (k+1,... . k+j)
suchthati+j+ 1 < k,andforalll <{ < j,(i+1l,k+j— ¢+ 1) € E. These
latter are the stacked bases.

8. A hairpin is the longest subsequence (i + 1,... ,j — 1) containing exactly one loop
andsuchthat (i +1,j —1) ¢ Eand (i, j) € E.

It is not difficult to see that every secondary structure can be uniquely decomposed into
hairpin loops, interior loops, bulges, ladders (or helical regions), and tails. The following
definition is a finite analogue of the notion of Cantor-Bendixson derivative from topology,
and is a tool for classifying multiloops. This was also the basis for an algorithm developed
by Waterman for predicting RNA secondary structure, allowing for arbitrarily complicated
multiloops.

DEFINITION 6.6 (M. WATERMAN [WAT78])
Let A be an adjacency matrix for a given secondary structure G = (V, E).

I A% = A
2. AUHD obgained from A by settingal't") = 0 = a'¥") whereveray), = 1 = al’}
where k, ¢ are members of a hairpin, and k # ¢ £+ 1.



208 COMPUTATIONAL MOLECULAR BIOLOGY

In other words, a multiloop, whose adjacency matrix is given by A, is kth order if £ iterations
of repeatedly removing stacked base pairs from hairpin loops yields a structure having no
loops. In [Wat78] Waterman proved that a secondary structure on {1,... ,n} has a unique
order k for some k < | 3].

A first attempt to compute the optimal secondary structure S of a given RNA sequence
uses the heuristic of maximizing the number of base pairs, since a structure having many
base pairs should be stable. This is the approach of Nussinov and Jacobson [NJ80], where
for a given nucleotide sequence s;,...,s, an n x n matrix M = (m, ;) is constructed,
where 1n; ; is the maximum number of base pairs occurring in an optimal secondary structure
for the subsequence s;, ... ,s;. The absence of knots and pseudoknots from condition 4 in
Definition 6.1 allows the determination of an optimal secondary structure for the subsequence
Si. ..., 8 to be determined independently of that for sg,... ,s¢, provided that 1 < i < j <
k < £ < n.This leads to the recurrence relation where m; ; equals the maximum of

mi 1 (6.7)
if j is not paired with any £ in interval [¢, j], and

;?ﬁfj{l + 1 k-1 + Mggr,j-1} (6.8)
if j is paired with that value k in [¢, j] which maximizes m; k1 + mg41,;-1.

Since the computation of m; ; depends only on values m; j-, where ¢ < i and j* < j, this
suggests applying the technique of dynamic programming, where the matrix M is filled in,
beginning along the diagonal leading from position (1, 2) to (n — 1, n), then continuing with
the diagonal leading from position (1, 3) to (n — 2, n), etc. as shown in Figure 6.2.

Figure 6.2 Filling in the Nussinov-Jacobson matrix.

Since m; ; is defined as above only if i < j, this leaves the lower-triangular part of A
unassigned. In the computation of m; ;, defined as the maximum of (6.7) and (6.8), we can
additionally store in m ; the index k that is base-paired with j, if j is base-paired, otherwise
0.

Instead of maximizing number of base pairs, it is biologically more meaningful to
determine the minimum energy E(S) associated with an optimal secondary structure for
nucleotide sequence S = s;, ... ,s,, where

E(S)= ) ali,j)

(i.y)es
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and a(i, j) is the (negative) stabilizing energy from the base pair consisting of the ith and
jth nucleotides. Here, one could distinguish between Watson—Crick and GU base pairs, by
defining a(i, j) for instance as follows:

-5 if 8;,;is CG or GC,
a(i,j) = ¢ —4 ifs;,s5is AUor UA,
-1 ifs;,s;1s GU or UG.

Defining E(S; ;) to be the minimum energy of a secondary structure on the sequence

Si,j = 8i,... .5 leads to the recurrence relation
E(Sj.'jAl)
E(S;;) = min a(i,j) + E(Siy1,j-1) ) (6.9)

min {a(k,j) + E(Six-1) + E(Sk41,5-1)}
i<k<j

Using dynamic programming to evaluate £(S; ;) yields one of the first algorithms for the
determination of RNA secondary structure, developed by Nussinov and Jacobson [NJ80].
Nussinov and Jacobson state that using this simple algorithm predicts most of the base pairs
observed in RNA bacteriophage MS2.

Since RNA cannot bend over short regions, it seems reasonable to assume that a base pair
between the ith and jth nucleotide cannot form if |j — | < g, where y is a threshold value -
for instance 2 = 3. This restriction can easily be introduced into the previous equation (6.9).

In Algorithm 6.1, the input RNA nucleotide sequence of length n is given by the string
505 ... ,Sn—1, while E(7, j) is the (¢, 7)th entry in the energy matrix. If i < j, then E(i,j)
is the energy of the subsequence s;, . .. , s;, as computed by the previous recurrence relation
(6.9). Fori < j, E(j,1) stores that index i < k < j such that s, s; are base-paired in order
to achieve the minimum energy E(i, j), while if s; is not base-paired, then E(j,i) = —1.
Variables min and index are used to determine the minimum energy and the index k.

Using the pointers £(j, i) indicating the index k for which s, s; are base-paired in order
to achieve minimum energy E (i, j), we can recursively determine the optimal alignment by
backtracking (Algorithm 6.2). Here paren is an array of length n, where all entries have
been previously initialized to contain *.".

It is more realistic to assume that the unpaired bases in a hairpin loop are destabilizing. This
leads to

E(Sij-1)
E(S; ;) = min iillklgj{a(kd) + E(Sik-1) + E(Sk+1-1)} , (6.10)
E(L;;)
where L; ; is a loop structure on s;, ... , s; and the ith and jth nucleotides s;, s; are paired.

Assume we have the following energies from experiments.

1. Let b be the (negative) stabilizing free energy of an additional stacked base pair, in
the case that the loop L; ; is a helix (ladder).

2. Let Ehp(j — i — 1) be the (positive) destabilizing free energy of a hairpin loop with
J — © — 1 unpaired bases, in the case that the loop L, ; is a hairpin loop.

3. Let Ebu(k) be the (positive) destabilizing free energy of a bulge with k unpaired
bases, in the case that the loop L; ; is a bulge at ¢.
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Algorithm 6.1 Energy matrix computation

for d = p ton—1{
for 1 = 0 to n—1 {
j=i+d;
if (3 < n){
min =0; index=-1;
if ( E(i,j—1) < min ){
min = E(i,j—-1);
index = -1; // j is unpaired
}
if ( j—i < p and a(i,j,S)+E(+1,j-1) < min ){
min = a(i,j) + E(+1,j-1);
index=1;
}
for k = 1 to j-pu {
val = a(k,j) + E(i,k—1) + E(k+1,j-1);
if (val < min) {
min = val;
index=k;
}
}
E(i,j) = min;
E(j.i) = index;

Algorithm 6.2 backtrack (i, Jj)

k = E(j.i);
if(k # —-1) {
paren (k] (s
paren(j] )
ifip < (j-1)—-(k+1))
backtrack(k+1, j-1,paren) ;
if (p < k=1—-1¢ )
backtrack (i, k-1, paren);

}
else { // Here k = -1
if(p < j—1-i){
backtrack (i, j-1,paren);
1
else

return 0;
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4. Let Ebu(k) be the (positive) destabilizing free energy of a bulge with k unpaired
bases, in the case that the loop L; ; is a bulge at j.

5. Let Eil(k + m) be the (positive) destabilizing free energy of an interior loop with k
unpaired bases in one bulge, and m unpaired bases in the other bulge.

Then
a(i,j) + b+ E(Sit1,j-1) i (1)
a(i,j) + Ehp(j —i —1) if (2)
E(L; ;) = min a(i, j) + I,PEI?{Ebu(k) + E(Sitrs1,5-1)} if (3)
a(i, j) + min{ Ebu(k) + E(Sit1,j-k-1)} if (4)

q@p+ﬁ@ﬁmuwwm+EwHHuﬂmn}ww)

Clearly, since for i, j fixed, we must determine a minimum over all k,m in the case of an
interior loop, the time of this algorithm is O(n*).
Following [HFS*94], let C[1, j1 be the free energy within the nucleotide subsequence

8i,....8; assuming that s;,s; base-pair with each other, while F[1i,3] is the free
energy for the subsequence s;,...,s; without necessarily assuming that s;,s; base-
pair. Hairpin(i,j) is the positive, destabilizing energy of a hairpin loop, where
Si,8j are base-paired, and s;41,...,$;_1 are unpaired. Interior (i, j;p,q) is the
positive, destabilizing free energy of an interior loop closed by the base pairs s;,s; and
Sp,Sq: 1.6. 8;,5; are base-paired with each other, as are s,,s4, while s;41,...,5,)
and sg4y,...,8;—1 are unpaired. Note that the case of stacked base pairs is represented

by Interior(i,j;i+1,3j-1) and that the case of a bulge is represented by either
Interior(i,j;p,Jj-1) or Interior(i,j;i+1,q). Finally, FM[i, j] is the free
energy of a multiloop region s;, ... ,s;, where the simplifying assumption is made that the
multiloop free energy contribution F' satisfies

F =a(i,j)+ bl +cU

for a multiloop s where s;, s; are base-paired, and having [ interior base pairs and U unpaired
bases (a linearity condition similar to the affine gap penalty in Gotoh's sequence alignment
algorithm). Pseudocode for the dynamic programming algorithm from Vienna RNA Package
is given in Algorithm 6.3.

The function Hairpin (i, j) consists of a positive, destabilizing entropic contribution
of hairpin([j~i-11, as given by Figure 6.3, for the j — ¢ — 1 unpaired bases in the
hairpin loop, closed off by the base pair s;,s;. There is an additional table mismatchH
giving negative energies for the base pair s;, s;, taking into account the exact nature of the
adjacent unpaired bases s;¢1,5;—1. Finally, there is a bonus energy for certain commonly
appearing tetraloops.

The function Interior (i, j;p,q) must distinguish between stacked bases, bulges,
and true interior loops, as already explained. The positive, destabilizing entropic energy due
top—1¢—1+ 3 — g — 1 unpaired bases in the interior loop (combined bulges) is given
by interior[p-i-1+j-g-1] in Figure 6.3, while the stabilizing energy due to stacked
bases is given in stack [ ] [ ]. For instance, the stacked base pairs CC, as in

5'~CC-3
3-GG-5
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Algorithm 6.3 FREEENERGY(s1,... ,$n)

for (d=1;d<=n;d++)
for (i=1;i<=d;i++) {

j=i+d;
C[i,3j] = MIN ( Hairpin(i,j),
MIN;<p<g<; (Interior(i,j;p,q) + Clp,ql),
MINjck<j (FM[i+1,k]+FM[k+1,j-11+a(i,3)) )
F{i,j] = MIN ( C[i,]], MIN;jcp<; (FM[i,k]+FM[k+1,3]) )

FM[i,3] = MIN ( b+C[i,j], c+FM[i+1l,3j], c+FM[i,j-1],
MIN;ck<; (FM[i,k]+FM[k+1,3]) )
}

return F[1l,n]; // free energy of sequence sj,...,! Sn

have energy —2.9 kcal/mol, whereas stacked base pairs

5'—AA-Y
3'-UU-
have energy —0.9 kcal/mol, and
-CG-%
-GU-5

have energy —1.2 kcal/mol. Finally, there is a destabilizing energy contribution due to
dangling ends, which does not appear in the above pseudocode, but is treated in the source
code of Vienna RNA Package.

All hairpins, bulges, and interior loops are assumed not to exceed 30 unpaired bases, which,
according to experimental evidence, is likely. This assumption, along with the affine energy
contribution from multiloops, renders an O(n?) algorithm for RNA secondary structure
prediction. The experimentally determined destabilizing energies for hairpins, bulges and
interior loops are given as follows (values at temperature of 37° C and | molar sodium chloride
concentration are taken from source code from Vienna RNA Package [HFST94, HFS*))
and are given in units of 0.01 kcal/mol).

Waterman [Wat95] follows a different approach in order to reduce the computation time
from O(n*) to O(n?), sketched as follows. For each i, j, s, store

El s =min{E(Sk ) s=—)+(m—k)=2,k>i+2.j-2>mm—-k—-12> u},
where ¢ is a threshold value. Then

mm{az J) + Eil(s) + E7 ; ,}

computes the energy for interior loops at ¢, j and takes time O(n?).
As a final remark, we mention that in [HFS*94], pseudocode for a dynamic programming
algorithm is given for the computation of the partition function

AG(S)
Q:E e~ RT |
S
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int hairpin(31] = {
INF, INF, INF, 410, 490, 440, 470, 500, 510, 520, 531,
542, 551, 560, 568, 575, 582, 589, 595, 601, 606,
611, 616, 621, 626, 630, 634, 638, 642, 646, 650};

int bulge(31] = {
INF, 390, 310, 350, 420, 480, 500, 516, 531, 543, 555,
565, 574, 583, 591, 598, 605, 612, 618, 624, 630,
635, 640, 645, 649, 654, 658, 662, 666, 670, 673}7

int interior[31] = {
INF, INF, 410, 510, 490, 530, 570, 587, 601, 614, 625,
635, 645, 653, 661, 669, 676, 682, 688, 694, 700,
705, 710, 715, 720, 724, 728, 732, 736, 740, 744},’

int stack[NBPAIRS+1] [NBPAIRS+1] =
/* CG GC GU UG AU UA  */
{{ INF, INF, INF, INF, INF, INF, INF, INF},

{ InF, -290, -200, -120, -190, -180, -170, NST},

{ INF, -340, -290, -140, -210, -230, -210, NST},

{ INF, -210, -190, -40, 150, -110, -100, NST},

{ INF, -140, -120, -20, -40, -80, -50, NST},

{ 1NF, -210, -170, -50, -100, -90, -90, NST},

{ INF, -230, -180, -80, -110, -110, -90, NST},

{ INF, NST, NST, NST, NST, NST, NST, NST}};

Figure 6.3 Some energy functions from Vienna RNA Package.

where the sum is over all secondary structures S for a given RNA sequence sy, .. . , 8,, as well
as for the partition functions Qf{j of the subsequence s;, ... ,s;, assuming that s;, s; base-

pair. This provides an efficient algorithm to compute the probability p; ; that s; base-pairs
with s; in a given RNA sequence s1, ... , $n.

6.2 DNA Strand Separation

During the replication of DNA and the transcription of DNA into RNA, the double strands
of DNA must separate to allow the formation of a complementary strand of DNA (in the
case of replication) and of an RNA transcript (in the case of transcription). In this section,
we outline an application of simulated annealing to determine the strand separation sites of
double-stranded DNA in transcription and replication events. In vivo, DNA has a negative
superhelicity to be explained later, which is a destabilizing factor that lowers the energy
required to separate hydrogen-bonded complementary base pairs. It thus seems plausible that
those hydrogen bonds that contribute least to the stability of DNA are broken first (e.g. AT
rather than GC bonds). Can one compute where the strands of double-stranded DNA first
separate when a gene is transcribed? Is it before, in the middle, or after the gene? Are there
unique sites where strand separation first occurs when DNA is replicated, and can these sites
be predicted by computational methods?
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In [Ben90], C. Benham developed a mathematical model and appropriate free energy
function to answer such questions. The energy function includes contributions due to
separation of strands, and to torsion resulting from rotation of free strands, as well as the
residual supercoiled free energy. The energy term for separation of strands concerns the
number of separation regions or runs r along with the total number n of separated base pairs,
and the nucleotide hydrogen bond strengths of the separated base pairs. The torsional and
residual energy terms include topological information concerning linking number, twist, and
writhe of circular, negatively supercoiled DNA. Note that though topological and secondary
structure information is incorporated in the free energy function, no consideration of the exact
tertiary structure of DNA is required.

In [SMFB95]., Sun, Mezei, Fye, and Benham developed an ergodic, balanced move set for
a Monte Carlo algorithm with simulated annealing, and were able to predict those sites where
double-strand separation should occur in transcription and replication events. See [FB99] for
a recent improvement by Fye and Benham.

Eucaryotic DNA is often found tightly coiled around a core of histones. Indeed, recall from
Chapter 4, Section 4.2.1 that histone H4 is one of the most highly conserved proteins. It is
known that the mean values for the roll and helical twist angles of a TATA box, a binding site
for RNA polymerase, are smaller than those for a random sequence. From such observations, it
seems clear that topological considerations might play an important role in any mathematical
model for transcription and replication events.

To this end, we discuss the properties of linking number, twist, and writhe, which are
topological properties of of circular DNA or of locally constrained linear DNA. Given two
oriented closed curves A, B in space, the linking number Lk( A, B) is defined as follows (in
DNA., the orientation is given by the 5 to 3’ direction). Project the curves onto a plane. For
each position p, where there is a crossing in the planar projection of curves 4 and B, rotate the
tangent vector of the top curve to coincide with the tangent vector of the borrom curve. If the
smallest angle of rotation to achieve the coincidence of tangent vectors is counterclockwise
then the index of p is +1, while if it is clockwise then the index is —1. Note that only
crossings of the curves A with B are counted, not those crossings of 4 with itself or B
with itself. The linking number is defined to be the sum of indices of all crossing points
divided by 2. Clearly the linking number is independent of the order of the closed curves; i.e.
Lk(A, B) = Lk(B. 4). Itis known that the linking number does not depend on the projection
considered, so that Lk is a fopological invariant of curves A, B. As an example, the linking
number in the right-handed helix of Figure 6.4 is 4, since each of the 8 crossings requires a
counterclockwise rotation of the tangent of the top line to be superposed on the tangent of the
bottom line.

Given an oriented closed curve C' in space, the writhe W7 (C') is defined as follows. Project
C' onto a plane, and compute the index of all points p where C crosses over itself, as in the
linking number index. The writhe Wr(C) is the average, over all possible projections, of
the sum of all crossing point indexes. This sum will usually be the same, except for a few
projections (e.g. when the curve is viewed from the side), so the writhe is approximately the
sum of indices of crossing points with respect to a canonical projection. (For instance, the
writhe in Figure 6.5 is approximately —3.)

The formal definition of rwist Tw(A4, B) is rather complicated, so we only consider the
case for a helix, sufficient for our purposes. Let A represent a strand of circular duplex DNA
and B the axis of the helix; i.e. consider double-stranded DNA to be a ribbon closed in a
circle, and let A be one edge of the ribbon and B be the circle described by the center of the



STRUCTURE PREDICTION 215

Image not Available

Figure 6.4 Linking number Lk = 4. Adapted with permission from [Whi89]. Copyright CRC Press,
Boca Raton, Florida.

Image not Available

Figure 6.5 Writhe Wr =~ —3. Adapted with permission from [Whi89]. Copyright CRC Press, Boca
Raton, Florida.

ribbon. Then the twist is simply the number of full turns that 4 makes with respect to B, i.e.
the number of times that the helix rotates about its axis. The twist is defined to be positive if
the helix is right-handed, and negative if it is left-handed. The DNA strand in Figure 6.6, for
example, has twist Tw = 1. In vivo B-DNA consists of 10.4 base pairs per turn, so a DNA
molecule consisting of n base pairs has positive twist of 1.

In [Whi89, Whi95], J.H. White proved the remarkable topological fact that

Lk=Tw+ Wr. (6.11)

White’s theorem has applications for computing the twist and writhe of DNA, for analyzing
the action of topoisomerases I and II, and, as we shall soon see, for the rotational and residual
energy of supercoiled DNA.

DNA is a right-handed helix with close to 10.4 base pairs per turn, so the twist of double
stranded DNA having n base pairs is + 13- In a non-supercoiled state, if the writhe is 0 then
Tw = 157 = Lk. Presumably for reasons of molecular stability, DNA prefers to maintain
its twist without change, though linking number and writhe may be altered — the former by
separation of strands and the latter by supercoiling. In this case, by White's invariant (6.11),
linking number and writhe change by the same amount.

If the axis of a DNA molecule itself forms a helix, then the DNA is said to form a superhelix,
and to be supercoiled. This happens in particular when DNA is wrapped about a nucleosome.
Experimentally, it has been determined that there are approximately 146 base pairs of double-
stranded DNA, which are wrapped in a left-handed sense about the nucleosome, forming
approximately 1.85 superhelical turns. Moreover, when wrapped on a nucleosome, there are
roughly 10 base pairs of DNA per helical turn, slightly more than 10.4 bp in the usual B-DNA
form. From a calculation in [Whi89, Whi95], using equation (6.11), it follows that the linking
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Image not Available

Figure 6.6 Twist Tw = 1.Adapted with permission from [Whi89]. Copyright CRC Press, Boca Raton,
Florida.

number of DNA decreases by | for every nucleosome it is so wrapped about, since in vivo
DNA is negatively supercoiled.

Topoisomerase I cuts one strand of duplex DNA, allows a rotation of the other strand, and
then reseals the broken strand. Since the twist is changed by 1, the change of linking number
is by 1. Topoisomerase 11 cuts both strands of duplex DNA, allows the passage of one side of
the cut duplex through the break, and then reseals both strands, without any change in twist.
Since the writhe is changed by 2, the change in linking number is 2.

With this introduction to linking number, we now turn to the question of determination of
DNA strand separation sites. In Benham’s model, the free energy G in supercoiled DNA can
be written as the sum of three components, Gep, G'tor, and G'es, as explained below.

Fix L throughout this section as the length of circular or locally constrained linear DNA.
Let Gsep(r, naT, ncc) be the free energy necessary to separate double-stranded DNA into r
runs or open loops, consisting of n 47 base pairs of the form AT and n¢c base pairs of the
form GC. (Figure 6.7 illustrates the case where r = 3.) Then

Gsep(Tynar,nec) = barnar + baenae + ar, (6.12)

where a > bge > bar > 0; i.e. the cost for nucleation initiation is greater than the cost of
GC separation (with 3 H bonds), which is greater than the cost of AT separation (with 2 H
bonds). We can consider an alternate form of the separation energy Gsep(r, n) in the case of
r runs with a total number of n separated base pairs. To this end, let b; equal b4 if the base
pair at the ith position is AT, and equal b if the base pair is GC. Let n; equal 1 if the strands
are separated at position i and 0 otherwise. Then the separation energy Gep (r, n) satisfies

L
Gsep(r,n) = ar + Z n;b;,

i=1

which can be rewritten as

L L
i+t
Geep(rin) = Y bini+ay, (1—2'3111 - n,-nm) (6.13)
i=1

i=1
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by considering the various cases where n;, n,; take the values 0, 1. See Figures 6.8-6.10,
and note that since the DNA is circular, one assumes that ny, 1 = n,. Moreover, the b; could
clearly be modified to allow for near-neighbor effects or for methylated or otherwise modified
bases.

Figure 6.7 Openings in strand separation.

The torsional, or rotational free energy G\, arises because the two single strands of DNA
in a separated region may rotate around each other by 7; radians per base pair at position .
This torsional free energy has been experimentally determined to be quadratic in 7, so

L
C .
Gror = 3 2_1 niTE, (6.14)

where c is a torsional stiffness constant. If the torsion is constant, and independent of position,
then 7; = 7 and 30 Gior = L 72

To compute the residual free energy G'.s, after strand separation and torsional contributions
have been considered, we need to return to topological considerations of equation (6.11)
relating linking number, twist, and writhe.

Let Lkg, Twy, and Wrg be respectively the linking number, twist, and writhe for DNA
in its usual non-negatively supercoiled state. Define the linking difference 6 to be Lk — Lky.
Assuming that twist Tw = 137 = T'wo remains constant, negatively supercoiled DNA has
linking difference § < 0, where from equation (6.11) the linking difference is the twist plus
writhe minus the twist in the unwrithed state; i.e.

6 = (Tw+Wr) — (Two + Wro) = (Tw — Two) + (Wr — Wro).

When negatively supercoiled double-stranded DNA forms an open region of separated
strands, the positive helical twist is reduced, relieving some of the stress, causing the new
linking difference to be less negative. If n base pairs are separated, then this contribution from
the twist is 5. Moreover, the free unpaired strands may twist around each other by an angle
of 7; radians for the ¢th base pair, or a fixed amount 7, assuming the torsional constants 7; to
be equal, as mentioned in the case of G-
It follows that the residual linking difference 8, satisfies
nr n

AT g 6.1
bt 9n =% 104 1)
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0 1+1
Figure 6.8 Case I: “0tl —pipiyy =0,
‘ T
1 |
7 1+ 1

Figure 6.9 Case 2: “H5tl — iy = 0.

B

1+ 1
Figure 6.10 Case 3: 2514l i,y = L
so that the torsion angle 7 is negative. According to C. Benham (personal communication),

T = —15° per base pair.
The residual free energy is known to satisfy

92
Gres = EQ_'”’ (6.16)

where k is an experimentally measured constant. Thus the total free energy G of supercoiled
DNA equals

G = Gsep + Gtor + Gres‘

To find a closed formula for G(r,n), the free energy of supercoiled DNA having r runs
with a total number n of separated base pairs, we allow 6, and 7 to equilibrate. Specifically,
this means that we minimize the free energy Gior + Ghres,

ner?  k6?

Gtor + Gres = 9 + 9 (6.17)
subject to the constraint
" 19, =0, (6.18)
2m
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where () is a constant. We apply the method of Lagrange multipliers defining

H(r6,) = -+6,-Q,

F(T, 07‘, A) = Gtor + Gres + AH(T, 07‘),

hence

2 2
F(r.6,,)) = ”"27 +ng

+A(;——;+0r—Q),

and find a solution to

0 a 0

Now %F = ner + 12% = 0 implies that
A = —2mer. (6.19)

Also, 55-F = k6, + A = 0 implies that

A= —kb,. (6.20)

Finally, %F = 5r + 6, — @ = 0 implies that 5= + 6, = Q, which is the constraint equation

2m

(6.18). Solving equations (6.19) and (6.20) for A yields

2mer = k6, (6.21)
From (6.15) and (6.18), we have
nr n
(7] — =Q =04+ — 22
= R TV E 6.22)
where () is a constant. From (6.21) we have 8, = 2—”;—’, which when substituted into (6.22)
gives
2mer + nr . nk + 4r2c o+ n
k 2T 2k N 10.4°
or

"= T (O i)

From (6.21), we have

g, =M, _ fmef_ kN, n
"T% T T Tk \an%c+ kn 10.4

B 4r2e 0+ n
T 4m2c + kn 104 )



220 COMPUTATIONAL MOLECULAR BIOLOGY

[t now follows that

ner?  kb?
2 2

ne 2rk n\l> k 4r2c n A\l
-2 [47r'zc+ kn (9 * Rﬁi)} T3 [41rzc+ kn (8 * 1—0—4>]

_ (6 +n/10.4)2 [(2mk)*ne N k(4n%c)?
(47%c + kn)? 2 2
(0 +n/104)? (4n%k*nc 167k
(472c + kn)? 2 2
(0 +1/10.4)2 _ , . .
= et hn)? (2n*k*ne + 87 c?k)
(6 +n/10.4)2

— 2 4 2
et kn)? [2n°ke(kn + 47 ¢)]

2m2ke n \2
T dmlc+kn [(O“LM) ]

This completes the derivation of the closed formula for the total free energy

Gmor + Gres =

G(?L, 7') = Gsep(ra n) + Gror + Gres

for supercoiled DNA with r runs consisting of a total of n separated base pairs, as given by

G L b 2n2ck P 2

(TL,I‘) =ar + ;ni i+ m ( m) . (6.23)

In [SMFB95], calculations were done with the following constants: at 0.01 molar Na*

concentration, a = 10.5 kcal/mol, bar = 0.258 kcal/mol, bz = 1.305 kcal/mol, ¢ = 3.6
keal/rad?, k = 23508L, R = 8.3146 J deg™" mole™!, and T = 310 K.

To apply Monte Carlo with simulated annealing, we devise a move set for which the

underlying Markov chain has stationary probabilities and for which the move set is balanced,

in that the detailed balance equation (2.5) from Chapter 2,

PiPij = PjPjis

is satistied for all states 4, j, transition probabilities p; j, p;;, and stationary probabilities
pi.p;. By Theorem 2.17, if the transition probability matrix P for the Markov chain
corresponding to the move set consists of strictly positive probabilities, then the Markov
chain is aperiodic and irreducible, and so has stationary probabilities. Choosing a symmetric
move set so that the Markov chain has symmetric transition matrix P clearly satisfies detailed
balance. From Chapter 2, it now follows that the Monte Carlo algorithm with simulated
annealing converges to a global extremum.

A single move of the Monte Carlo algorithm goes as follows. For 1 < i < L, change n;
to 1 — n; with probability p, for a fixed 0 < p < 1. In other words, flip each site, either
from closed to open, or from open to closed, with probability p. It is clear that this move
corresponds to a Markov chain with stationary probabilities satisfying the detailed balance
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equation. However, even repeating this move a large constant ¢ number of times, in order to
decrease the cross-correlation or non-independence of states, the convergence of this Monte
Carlo simulated annealing algorithm is reported in [SMFB95] to be unacceptably slow.

For this reason, [SMFB95] devised an additional set of shuffling moves, which decrease the
cross-correlation between states and allow for reasonable convergence times on phage A DNA
consisting of 48 502 base pairs. The shuffling operations considered are as follows:

1. Rotation of all open loops a random distance around the circular DNA without
changing their number or the lengths and separations distances of loops.

2. Shift the relative starting positions of loops, without changing the number of loops
or their lengths.

3. Squeeze or redistribute the open pairs among loops, without changing the number
of open base pairs or the number of regions.

4. Exchange regions by amalgamating or dividing open loops.

It is shown in [SMFB95] that with these shuffling operations detailed balance is satisfied, and
stated that the algorithm scales quadratically in the length L of the circular DNA.

We end this section with some concluding remarks about Benham’s general statistical
mechanical model. Define the partition function Z by

7= Z e 9G ), (6.24)
veEV

where 3 = ﬁT— T is the absolute temperature, kg is Boltzmann’s constant 13.805 x 10~

JK™!, and V is the set of all states, i.e. all the 2L possible states of various strand separation
resp. non-separation with all possible torsion 7 angles. The partition function is given exactly
in [Ben90] by

[s.e] 2
o 3KO?/2 | Z{ ar+bn)/ e‘ﬁ[%+%(9*ﬁ7%’%) ]d‘r},

—o0

where 3 = m—, and c and k are the constants mentioned earlier.
From the Boltzmann distribution, it follows that the probability of strand separation at site
i1is

Z . e—d(r‘(v)
i = 19.2 ’ (6.25)

where V; = {v € V| position ¢ of strand is separated}. If p; = 1 resp. p; = 0 then the strand
at position ¢ is separated resp. not separated.
The ensemble average free energy of all states in 1 is

(Gi) = E[G@):veV

= Z G(v) Pr[v]

veV;

— Z G(v)

vEV]
2vev: G(U)e_"("‘")
szQ\' e~ 8G(v)

—dG(v)
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Similarly, the average free energy of the equilibrium distribution over all states in 17 is

ZUE V G(IU)()'_J(;(“)
ZUEV C_U(;(l')

The difference AG; = (G;) — (G) is the incremental free energy required to separate the
base pair at position ¢. If AG; < 0, then separation is favored. In [Ben93], AG, is plotted as a
function of i for the DNA in pBR322 and ColE! plasmids of E. coli, bacteriophage f1, and the
polyoma and bovine papilloma virus genomes. The resulting sites of predicted destabilization
in E. coli occur both at promotor and at or near terminator regions of certain operons, thus
suggesting the existence of a class of prokaryotic transcription units, which are bracketed by
destabilized regions. This suggests that the helix destabilization profile plot of AG,; versus i,
a global measure, might be combined with hidden Markov models, a local measure, in order
to determine likely coding regions.

From [Ben93], it was observed that the longest run of AT base pairs in polyoma virus DNA
is not contained in any of the 10 most destabilized regions of the molecule. Nevertheless,
given enough real strand separation data as well as data output from the Monte Carlo program
of [SMFB95], it would be interesting to apply hidden Markov models to determine whether
local sequence similarity appears to determine where strands separate.

According to Benham (personal communication), easily destabilized sites are strongly
correlated with various classes of regulatory regions, where recently found regulation
mechanisms specifically involve stress-induced strand separation. A dozen different examples
of this phenomenon are now known.

Another application of Benham’s statistical mechanical model concerns DNA supercoiling
in thermophilic bacteria. We have seen that negative supercoiling can be harnessed for
transcription and replication events by lowering the free energy required for strand separation.
Similarly, positive supercoiling can prevent denaturation of in vivo DNA at temperatures
and/or stress conditions, where non-supercoiled DNA would separate. In [Ben96), using the
previously developed theoretical model, calculations are given of a critical temperature T,.,
where DNA denaturation occurs, regardless of amount of positive superhelicity.

Recently, in [FB99], Benham and Fye used the previously derived free energies, but were
able to evaluate certain integrals directly, rather than using a Monte Carlo algorithm. With
this approach, their method correctly predicted the location and relative frequency of base
pair openings in pBR322 from [KNES8], using an algorithm using O(L?) operations and
O(L) space.

In concluding this section, we mention that it is believed that the determination of strand
separation sites depends on global information of the entire circular (or locally constrained
linecar) DNA, rather than on local properties of the nucleotide sequence. Protein structure
determination, a topic to which we soon turn, is also a global problem, where, in addition to
local force contributions, protein folding is known to be influenced by non-local, long-range
interactions.

G) =

Which duplex sites are destabilized depends in part on local sequence
attributes, with separation energetically favored to occur at A+T-rich sites
under normal physiological conditions. But superhelicity globally couples
together the secondary structures of every base pair in the molecule.
Transition at any one location alters the helicity there, which, by changing
the distribution of superhelicity throughout the molecule, alters the level
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of stress experienced by every other base pair. [SMFB95]

It remains in our view an interesting open problem to try to quantify to what extent local
sequence information is pertinent. With growing genomic database information, by using
HMMs along with an implementation of the simulated annealing strand separation algorithm,
one might be able to quantify to what extent strand separation is a global versus local
phenomenon.

6.3 Amino Acid Pair Potentials

One of the most important open problems in computational biology concerns the
computational prediction of the tertiary and quaternary structure of a protein given only the
underlying amino acid sequence. Since the enzymatic properties of a protein are determined
by its 3-dimensional structure, a feasible computational solution to protein structure prediction
would enormously facilitate drug design. During the last few decades, much effort has been
made toward solving this problem, with various approaches including

molecular dynamics,

secondary structure prediction,

homology and pattern recognition,

energy minimization on lattice models using combinatorial optimization methods
(Monte Carlo, simulated annealing, genetic algorithms, and constraint programming
techniques),

e knowledge-based methods such as amino acid pair potentials and protein threading.
etc.

In |Sip90], building on earlier ideas of [MJ85], M. Sippl used the Boltzmann distribution to
define an energy function with terms involving amino acid pair potentials, computed from a
representative database of 3-dimensional coordinates of protein structures. Given an energy
function E defined on a finite set 1 of states, recall that the Boltzmann distribution is defined
by

p(v) = 7 (6.26)

where the partition function Z = Y7 e 7 If the energy function E is not known,
but the probabilities p(v) for v € V' can be determined, as in Sippl's case, from the protein
database, then by taking the logarithm of (6.26), we can determine E(v):

E(v) = —RTlnp(v)— RTInZ. (6.27)

It is generally assumed that a protein folds into a unique conformation determined by the
global minimum of its free energy. While an exact energy function has yet to be determined,
there are contributions from the hydrophobic effect, the electrostatic force between charged
amino acids, the Lennard-Jones potential, van der Waals force, etc. A first approximation to
such an energy function is to consider only pairwise force contributions.

Without knowing an appropriate energy function to minimize, it seems reasonable that
the average distance between a given pair of amino acids (say valine-isoleucine) in a
representative protein database should correspond to the average energy contribution due to
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this pair. For example, it is known that proline residues tend to disrupt a-helices, so one
expects to find a large average distance between proline and alanine, the latter often found in
«-helices. Sippl’s idea is to compute a frequency for distances between amino acid pairs, and
using (6.26), (6.27) to compute the corresponding amino acid pair potentials.

Before proceeding further, a small remark on the choice of a representative protein database
is necessary. Since medicinal applications have high priority in biological research, globular
proteins such as immunoglobins have received much more attention than other classes. Sippl’s
work requires the removal of such redundancy from a representative protein database, because
the amino acid pair potentials should represent a statistical approximation to a physical energy,
rather than an artifact of skewed amino acid pair frequencies occurring in a particular class
of proteins. A representative protein database can be produced by using PDB Select 25,
which selects proteins that share less than 25% sequence homology.

Assume that p is an index varying over all proteins in our selected protein database P.
Denote the number of residues in the pth protein by L,,. The amino acid sequence of the pth
protein is

Sp = (Sp(1),5p(2),....5,(Ly))
and the protein’s conformation is given by C,, where C,(i, j) is the (Euclidean) distance
between the «-carbon of the ¢th and jth residues. Sippl notes that within an a-helix, on
average 5.5 A < C,(i,i+4) < 6.5 A, while for extended F-strands, 11.0 A < C,(i,i +4) <
14.0 A.
Define

lop, = min{Cp(i,j)|k=j—1i,p€P},
hiy, = max{Cp(i,j)|k=j—1i,pe P},
so that loy (resp. hiy) is the smallest (resp. largest) (Euclidean) distance between residues

whose linear distance along the amino acid chain is k units. Let N be the number of intervals
into which [log, hi] is to be divided (in practice, Sippl sets N = 20). For 1 < s < N. define

(s = D)(hix = log)
N

intg(s) = lox +

and let I N T} (s) be the interval (inty (s — 1), intx(s)]; i.e.

(.‘s‘ — ].)(hlk - I()A.)
N

log + <rx <lop +

A‘\‘r (8) = T
INT(s) {J N

s(hix —log) }

Let iz denote the number of amino acid pair observations, regardless of residue: i.e.
ne={pij) [k=j—i.1<i<j<LypeP}
For1 < s < N, define
ni(s) = . Nlhk=4—-i,1<i<j<Lpp€P.Culi,j) € INT(s)}|

to be the number of amino acid pair observations, regardless of residue, whose Euclidean
distance is s. The reference amino acid distancy frequency is defined to be
ng(s)

fels) = . (6.28)
ni
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As indicated above, one can then determine Ej(s), the reference potential of mean force
of the interaction between two a-carbon atoms of residues at linear distance k. For each
possible combination of amino acids a, b (there are 400 such pairs, which cannot be considered
symmetric, since there is an amino initial group (NH;) and a carboxyl terminal group
(COOHR)), let nZ'b denote the number of observations of amino acid pairs (a,b) that are
located at linear distance k along an amino acid sequence in the protein database; i.e.

gt = {(p,1,5) [k =j —i,p € P,Sp(i) = a,S,(§) = b}
Similarly for 1 < s < N, define the number
ng®(s) = [{(p.i,4) | k=j —i,p € P,Sp(i) = a,8,(j) = b, Cp(i.j) € INTi(s)}]

of observations of amino acid pair (a, b) whose linear distance is k and Euclidean distance is
s. Define the specific amino acid distance frequencies by

gl(s) = <= (6.29)

In Sippl’s data set, for k& = 3, there were 161 distances in the database for the pair alanine-
alanine, while there is only one distance for the pair methionine-tryptophan. In general, there
may be very few entries of certain pairs (a, b) with respect to other pairs (a’, b'), so define
the following weighted average of fi(s) and g,‘;’b(s). Let o be a model-specific parameter
(o= 51—0 in [Sip90]) and define the normalized specific amino acid distance frequency by

s) + g% (s)n®’s
;cl,b(s) — fk( ) gk a(b ) k ) (630)
1+ny"c

Note that fr(s) and gZ’b(s) have equal weight after 1 observations. By inverting the

Boltzmann distribution, we have

EX'(s) = -RTInf%s)— RTInZy". (6.31)
Define the net pairwise potential
AEM(s) = EX(s) — Ex(s)
= —RT (m FE¥(s) = 1In fu(s) + In Z2* —In zk)

a,b a,b
i (S) Z )

—RTIn £ — RT'In =&,
fr(s) Zy

Now, from frequency data extracted from the protein database, there is no possibility of
a.b

determining the partition function values Z,‘:’b, Zy. However, the term —RT In %ﬁ— is a

constant not depending on the state s, and so Sippl assumes that Z,‘:’b ~ Zy, and hence

a,b
the term —RT In %‘k— 2 0. It follows that

ab
a,b - kY (3)
AE;”(s) = —RTIn ) (6.32)

a.b
RTIn(1 +ni’c) — RTIn |1+ nfto 2k ®)1 (6.33)
fr(s)

il
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Note that if the distributions of the g,‘:‘b(s) are very similar, then AE,’:"’(s) ~ (), and this
approach will give no valuable information. However, computations from the protein database
indicate quite different distributions.

At this point, one could use Monte Carlo with simulated annealing with the amino acid pair
potentials in order to construct a protein folding. To avoid problems of local minima, Sippl
introduces an idea now widely used in protein threading. Suppose that S is a (new) amino acid
sequence of length L of a protein whose conformation we wish to determine. Let C' be a given
conformation for an oligopeptide of length L, i.e. C'(i,j) is the Euclidean distance between
the ith and jth residues. The net potential in folding S in the conformation C is given by

AES,C) = > ARG )). (6.34)

1<i<j<L

Now, for every L-length subconformation C' of a protein in the database P, compute
AE(S, (), thus yielding the net potential spectrum-for oligopeptide S. From the net potential,
one can construct clusters of low-potential conformations.

Nuclear magnetic resonance (NMR) studies have shown that oligopeptides often take on an
ensemble of different conformations, rather than having a unique conformation. For instance,
Sippl points out that the pentapeptide VNTFV is found in an a-helix in erythrocruorin, but
in a 3-strand in ribonuclease. Using amino acid pair potentials, Sippl is able to classify small
oligopeptides (of length L < 7) as either stable (favoring a particular conformation), flip-flop

~(favoring two or a small number of distinct conformations), metastable (favoring a particular
conformation, as well as a range of other conformations), and unstable (no conformation
preference).

In [Kr696], T. Kroger and B. Steipe extend Sippl’s approach to compute vectorial amino

~acid pair potentials; e.g. for pair valine—isoleucine, to compute frequencies f*°! with respect
to a distance and direction. Their approach is outlined as follows.

For each pair (a, b) of amino acids, measure the 3-diminsional vector @(a, b) from a to b in
a representative protein database. By translation and rotation, place the a-carbon atom of the

““amino acid a at the origin, where the nitrogen atom lies in the negative x-axis, and the other
carbon atom of the backbone lies on the xy-plane. Define an appropriate 3-dimensional lattice
and round the previously calculated vectors to the nearest lattice point, storing the resulting
vector frequencies as an oct-tree.

I [Kr696], a number of small modifications of Sippl’s approach were taken. For instance,
cysteine is a small hydrophilic amino acid with a sulfur atom in its side chain, which

~ often appears in a cysteine—cysteine disulfide bond. Kréger and Steipe distinguish between
cysteines depending on whether or not they appear in a disulfide bond - in the former case,
cysteine is treated as a 21st amino acid with designation CSS. Another divergence from Sippl’s
approach lies in the definition of reference frequencies. In our discussion of Sippl’s work, the
relative frequency fi.(s) is defined by

fils) = M)
Ty
as in equation (6.28):-This corresponds to the probability that an arbitrary amino acid pair
" (a, b}, at linear distance & in the amino acid chain, lies at Euclidean distance s. By contrast,
in [Kr96]. for each pair (a,b) of amino acids, the reference frequency f(8) is defined as
follows. Let § denote a 3-dimensional vector, varying over grid points. For an amino acid pair
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(a,b), the relative frequency

nn,b(g)

nn,b

R =
is compared with the reference frequency for (a, b), given by

n(3) — n®%(%)
f& = n—net
Thus, in the case of [Kr696], the reference frequency f*°(5) measures the probability that in
the vector § a different amino acid pair than (e, b) occurs. In recent work, Kaindl and Steipe
have extended this approach to non-contiguous motifs in proteins.

Before closing this section, we make a few remarks about how to perform the translation
and rotation required in the amino acid pair vectorial frequencies. First, recall that a rotation
by angle 8 in the wy-plane can be achieved by application of the rotation matrix

cosf —sinf 0
sin 6 cosf 0
0 0 1

while a rotation by angle € in the x'z-plane can be achieved by the rotation matrix

cosf 0 —siné
0 1 0
sinf 0 cos 6

Recall also that cos(—8) = cos @ and sin(—6) = —sin 6.

With these preliminaries, we now describe the translation and rotations to be made, in
order to compute vectors emanating from the a-carbon of a fixed amino acid a in the
protein P. First, replace the original coordinates (x,y, z) of each atom of protein P by
(£ — Ta,Y — Ya, 2 — 2a), Where (o, Yo, 2a) are the coordinates of the a-carbon of the fixed
amino acid in P. This translates the a-carbon to the origin. Now suppose that the coordinates
of the nitrogen atom after this translation are (z¢, Yo, 20). Let r = \/x§ + yo, and define 6,
to be the angle such that cos fp = £2 and sinfly = 2. Let X be the rotation matrix for angle
—8#y, so that

Lo ¥ 0

r.r
X=| -k & g

0 01

Letg = \/7.'2 + 22, .and define 6; to be the angle such that cos 8y = 5 andsinf, = 7'9 LetY
be the rotation matrix for angle —8;, so that

0
Y = 1
0

<y oS
< o""g

Then Y X is a rotation matrix that places the nitrogen atom on the positive x-axis. Suppose
that after the translation and subsequent rotation Y X, the other carbon atom on the backbone
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has resulting coordinates (x1,y1,21), and let s = \/y? + z}. In a similar fashion to the
definition of .X' and Y, define the rotation matrix Z by

1 0 0
z=0o v =u
0 -% 4

Then Z rotates the carbon atom with coordinates (1, yi1, z1) to the zy-plane. Finally define
U by
-1 0 0
U= 0 -1 0
0 01
and note that an application of U rotates the nitrogen, which lay on the positive x-axis, to lie
on the negative x-axis.
Summarizing, let A = UZY X. Then for each atom b of protein P with coordinates

(. y, z), compute
!

r T — Tq
ol —

y =41 y-va
2 2~ 2a

This now allows the determination of vectors ¥, , from the a-carbon of the fixed amino acid
« to the a-carbon of any other amino acid b of the protein P.

In forthcoming work, P. Clote and S. Will have adapted Sippl's approach to develop a
genomic motif detection algorithm, making preliminary tests for tRNA detection [Clo98].

6.4 Lattice Models of Proteins

Though experiments on small proteins [Anf73, KS92] suggest that the native state of a
protein corresponds to a free energy minimum, this is not yet proven. Nevertheless, this
hypothesis is widely accepted, and forms the basis for computational predictions of a protein’s
conformation from its amino acid sequence.

Molecular dynamics modeling, which simulates the conformational changes of a peptide by
taking into account the electrostatic, ionic, van der Waals (dipole—dipole), hydrogen bonding,
and other forces considered at the atomic level (for the atoms of the peptide, together with
those of the solvent), can currently simulate around 10~7 seconds of the folding sequence.
This is orders of magnitude less than the time required for a protein to fold (milliseconds to
seconds). Moreover, certain studies { Tee86, Tee91] have shown that the energy functions used
in molecular dynamics are not fully correct, leading to rather different predictions.

In light of these difficulties, simplified models have been introduced. An important class of
simplified models comprises the so-called lartice models. The simplifications used in this class
of models are as follows: (1) monomers (or residues) are represented using a uniform size,
(2) bond length is uniform, and (3) the positions of the monomers are restricted to positions
in a regular lattice. In the simplest case, every conformation of a lattice protein is a self-
avoiding walk in Z? or Z3 (depending on whether one considers a two-dimensional or three-
dimensional lattice). A discussion of lattice proteins can be found in Dill e al. [DBY95].

The most predominant representative of lattice models is the HP model, introduced by
Lau and Dill [LD89, LD90]. In this model, the 20-letter alphabet of amino acids (and the
corresponding variety of forces between them) is reduced to a two-letter alphabet, namely
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H and P, where H represents a hydrophobic amino acid, whereas P represents a polar or
hydrophilic amino acid. The hydrophobic force is believed to be the predominant force in the
folding of globular proteins; indeed, see [BWCO00] where the effect of the hydrophobic force
in protein folding is quantified. The energy function for the HP model is given by the matrix

H|P
H|-1]0 (6.35)
P|lO |O

which simply states that the energy contribution of a contact between two monomers is —1 if
both are H-monomers, and O otherwise.

In the following, a sequence is an element in {0, 1}*, where 0 denotes a polar (P) monomer,
and 1 denotes a hydrophobic (H) monomer. We denote the ith element of s by s;. A
conformation w of a sequence s is a function

w:[l.]s]] = z¢

{where d = 2 or d = 3 depending on whether we consider 2-dimensional or 3-dimensional
lattice) such that

1. V1 <i < |s] : |lw(@) —w(i+ ]| = 1, where || - || is the Euclidean norm on Z%; and

2. Vi# j:w(i) # w(j).

The first condition is imposed by the lattice constraint and implies that the distance vector
between two successive elements must be a unit vector (or negative unit vector) in every
admissible conformation. The second condition is the constraint that the conformation must
be self-avoiding.

In a given conformation w, we distinguish between connected and topological neighbors.
Two monomers ¢ and j are connected neighbors in w exactly when j =i+ 1lorj =1 — 1.
Note that the number of connected neighbors is independent of the actual conformation w.
Two monomers ¢ and j are topological neighbors exactly when ¢ and j are not connected, and

llw(@) —wOll = 1.

See Figure 6.11 for an example conformation together with the listing of the different types
of neighbors. Given the energy matrix defined in (6.35), the free energy of a conformation
is the negative number of topological HH-neighbors. Thus, the conformation with minimal
energy is a conformation that maximizes the number of contacts (i.e. has maximally compact
hydrophobic core). Formally, a native state is a conformation having minimum contact energy

E = Z B,‘\j&(]‘,‘,?‘j), (636)
1<i+1<j<n

where 8(r;, ;) is 1if ||r; — rj|| = Land i # j + 1, otherwise it is 0. and B; ; = —1 provided
the ith and jth residues are both hydrophobic, otherwise it is 0. In dimension 2 and more
especially dimension 3, the principal disadvantage of the HP model is its degeneracy: i.e. a
given HP sequence might have distinct conformations having a maximum number of unit-
distance H-H contacts, though there is less degeneracy when considering normalized Woese
polar requirements, as explained in Section 6.4.2.
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Figure 6.11 Samplc conformation for 1101101, The white beads represent P, the black ones
H monomers. The two contacts are indicated via dashed lines.

The HP model approximates the hydrophobic force, which is not really a force, but rather
an aggregate tendency for nonpolar residues to minimize their contact with the solvent. The
HP model is conceptually simple, allows the incorporation of refinements (HPNX model
including clectrostatic forces, etc.), and appears to be computationally less intractable than
full molecular dynamics. Nevertheless, in the HP model, the problem of computing the native
state that maximizes the number of non-contiguous unit-distance HH contacts is NP-complete
(for dimension 2, see Crescenzi et al. [CGP*98]) and for dimension 3. see Berger-Leighton
[BLO9S]), despite the existence of folding algorithms which provably yield conformations
within a factor of the optimal. An example of the latter is the Hart~Istrail algorithm, discussed
next.

In [SSK94a, SSK94b]. Sali. Shakhnovich, and Karplus (hereafter SSK) simulated protein
folding by applying a Monte Carlo algorithm for fixed temperature (i.e. nor simulated
annealing) to a 27-bead heteropolymer in a cubic lattice, where contact energies were
normally distributed. Their principle conclusion was that the protein folding time ¢ appeared
to be small it and only if the energy gap between the lowest energy and the second lowest
energy of conformations on the compact 3 x 3 x 3 cube was large. It would follow that
thermodynamic considerations alone (rather than specific, encoded folding pathways) suffice
to drive the protein (27-mer in a cubic lattice) to its lowest-energy conformation, thus
answering the Levinthal paradox {Lev68] of how a protein can fold rapidly. i.e. within
milliseconds to seconds, despite the magnitude of the conformation space (e.g. approximately
526 a2 10" for the 27-mer). In [Cl099], P. Clote provided a first mathematical justification
for the empirical observation of SSK, by applying in an appropriate manner Sinclair's
Theorem 2.19 stated in Chapter 2. The mathematical details of [Clo99] lic outside the scope
of this text.

The importance of this contribution of SSK should not be underestimated, since it has
stimulated widespread interest in theoretical chemistry [Cha95, KSS95] and computational
biology [Kar97b]. Moreover, the 27-bead heteropolymer mode! or variants thereof have been
used by a number of researchers, including [CD91, GG95, GG96, BB97, VKBS95, LHTW96,
SSK94b. SSK94a, YFT'95], as well as an interesting application by Shakhnovich for the
simulation of prebiotic selection forces (proteins are currently selected for functionality within
a cell, while in prebiotic times proteins may have been selected for rapid folding).
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6.4.1 Monte Carlo and the Heteropolymer Protein Model

In [SSK94b, SSK94a]. SSK consider a 27-bead heteropolymer on a cubic lattice, such that
the residue-residue contact potential E satisfies

E= Y Bi(ri—r)

1<i<j<27

where B; ; is normally distributed with mean —2 and standard variation 1, ||r; — 7;l| is the
Euclidean distance between residues i, j, and 6(r; — ;) = 1if ||r; — ;|| = 1 and 4. j are
not immediate neighbors in the polypeptide chain (i.e. |i — j| > 1), otherwise it is 0. With
high probability, the native state lies in the compact 3 x 3 x 3 cube. Removing symmetric
duplicates, there are exactly 103 346 conformations in the compact cube; sorting the energics
for these conformations, one has an energy spectrum, where E;, (resp. E;, ) denotes the energy
minimum (resp. second lowest energy).

SSK define a protein to be strongly folding if in at least 4 out of 10 simulations. the
first passage time to the native state is at most 50 x 10°. This measure is quantified by
defining the foldicity of a protein to be the fraction of simulations in which the minimum
energy conformation is attained within 50 x 10° Monte Carlo steps; i.c. the first passage time
<50 x 109,

The SSK protein simulation program uses Monte Carlo at a specific temperature (nor
simulated annealing), where the choice of temperature is optimized so that (roughly) the
Boltzmann probability

e—Fio/T

Z ~ 0.4,

where the partition function Z = 3" ...~ ¥</T and C'C denotes the collection of 103 346
conformations on the compact cube.

Temperature selection is explained at length in [SSK94b]: in essence. the temperature is
chosen to be sufficiently low for the energy of the native state to be a pronounced global
minimum (thermodynamic equilibrium) yet sufficiently high for the simulation to avoid local
energy minima. Such considerations seem indeed relevant to the physical case of protein
folding. SSK then argue that, at least for the simplified 27-bead heteropolymer with normally
distributed contact potentials, protein folding on a cubic lattice does not require any specific
protein folding pathways, since they observe that a random coil 27-mer folds within 50 x 10°
steps if and only if the energy gap E;, — E;, between the lowest and second lowest energy is
large. In [Cl099], an upper bound on the mean first-passage time for a Markov chain related
to SSK protein folding is derived, thus giving a first analytical explanation of {SSK94b].

Local Move Set

If one models protein folding by a Markov process, then one must define a set of valid moves
between conformations. SSK allow a valid move from conformation i to j only if one can
perform an end, corner, or crankshaft move, while preserving the condition of being a self-
avoiding walk (called the excluded-volume condition).

end: For k = 1 or k = 27, one moves the end segment determined by & [i.e. (1,2) or
(26,27)] in any of 5 possible directions.
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corner: For2 < k < 26, if (k — 1,k) and (k, k + 1) are not colinear, then move the
corner (k — 1,k, k + 1) 180° within the same plane.

crankshaft: For 2 < k < 25, if segments (k — 1, k), (k,k + 1) and (k + 1,k + 2)
form a U-shape, then rotate the U-structure either 90° or —90°.

End moves and corner moves are designated as /-monomer moves, while the crankshaft
move is designated as a 2-monomer move. The corner and crankshaft moves are illustrated in
Figure 6.12. With probability 0.2, one decides to perform a 1-monomer move; if 2 < k < 26,
then this is a corner move, otherwise an end move. With remaining probability 0.8, a 2-
monomer move is executed, if possible.

Taking into account the local set move, excluded volume constraint, and Metropolis
criterion, there is a well-defined probability p; ; of transition from state i to j.

B G O

Figure 6.12 Corner and crankshaft moves. The gray bonds and monomers are changed.

Pivot Moves

The previously defined moves of SSK are local, in the sense that constantly many (here at
most 2 sites) on the self-avoiding walk are changed. A theorem of Madras~Sokol |[MS87]
states that local move sets explore only an exponentially small subset of the collection of
all n-step self-avoiding walks. In contrast, a pivor move for a conformation is defined by
choosing at random a site of the self-avoiding walk, thus dividing it into two segments. Taking
this site as the origin, perform a rotation or reflection of one of the segments to obtain the
next conformation, provided that the excluded volume condition is respected. Pivot moves
are ergodic, in the sense that Monte Carlo pivot simulations of linear polymers explore the
entire conformation space. We define pivot phantom moves as above, but where the excluded
volume condition is dropped; i.e. intermediates along the folding pathway are allowed to be
non-self-avoiding walks. In Appendix Il of [SSK94b], such phantom conformations obtained
by the SSK local move set are considered, where multiple occupancy of sites is allowed but
penalized (so-called quasi-self-avoiding walks). For such moves, no significant differences
were observed from the original simulation.

As noted by E. Shakhnovich (personal communication) and further substantiated by
simulation programs of S. Will in our group in Munich, Monte Carlo with the above local
move set appears to find the native state substantially faster than Monte Carlo with pivot
moves.
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6.4.2 Genetic Algorithm for Folding in the HP Model

In [UM93], R. Unger and J. Moult described a hybrid genetic algorithm to determine minimal
energy conformations on a 2-dimensional square lattice, using the HP model. Building on this,
in [BWCO00] R. Backofen, S. Will, and P. Clote attempted to quantify the contribution of the
hydrophobic force in protein folding, using an extension of the HP model involving Woese’s
polar requirement (a measure of hydrophobicity) on the 3-dimensional face-centered cubic
lattice (FCC). This was done by applying a substantially more efficient version of the Unger-
Moult hybrid genetic algorithm to determine a minimal-energy conformation C, where only
the hydrophobic force was considered, and then computing the root mean square deviation
(RMSD) between conformations C' and D, where D is the actual protein conformation, taken
from the PDB. The algorithm of [BWCO00] uses automorphism groups in handling arbitrary
2- and 3-dimensional lattices, employs octtrees for efficient space usage, and performs the
energy computation (6.37) in linear, rather than quadratic time.

Given an input length n HP sequence, we maintain a population of P conformations
(P = 200), as represented by a chromosome, or relative direction sequences of length
n — 1. The population at time ¢ is denoted P(t). The fitness F(c) of conformation ¢ equals
—E(c), where the energy is given by equation (6.36), or the following modification of it using

Algorithm 6.4 Unger—Moult hybrid genetic algorithm

t =0
initialize population P(t) of random coils
best = argmax { F(x) | x in P(t) }
repeat {
t++
pointwise mutation
n=0
while (n < P) {
select 2 chromosomes m, f
produce child c¢ by crossover of m,f
ave = average( F(m), F(f) )
if (F(e) >= ave){
place ¢ in next generation
n++
}
else {
z = random(0, 1)
if (Z < e-—( ave — F(c) /T ) {
place ¢ in next generation
n++

}

}
end while
update best

until convergence
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normalized polar requirements:

E=— Y ppjd(ri,r)) (6.37)

1<i<j<n

where 8(r;,7;) is 1ifif ||r; —rj]] = 1and i # j£1, otherwise itis 0, and p; = 13=Z where
& is the polar requirement value from Table 1.2. This contact energy clearly generalizes that
of the HP model.

For each chromosome, choose a site 1 < ¢ < n — 1 and perform a pointwise mutation at
site i with with probability p,,,. Each chromosome u is selected for crossover according to its
fitness (i.e. with probability F'(x)/ Zyel’ F(y)), using the roulette wheel technique. It should
be noted that this algorithm is not a typical genetic algorithm, but rather a hybrid form that
incorporates the Metropolis criterion. The pseudocode is given in Algorithm 6.4.

The pseudocode for the approach in [BWC00] to quantify hydrophobic force in protein
folding is given in Algorithm 6.5. The input consists of the a-carbon coordinates from PDB
and normalized polar requirement values. This algorithm was run on data from the database
of ancient conserved regions drawn from GenBank 101 supplied by W. Gilbert's lab,' as well
as medium-sized proteins (E. Coli RecA, 2reb, Erythrocruorin, 1eca, and Actinidin 2act).
Some sample results are given in the following table (see [BWCO00] for more on the methods
and the full results):

Name Energy RSMD | hyd.meas.] | hyd.meas.2 | s.d.(hyd.meas.2)
aat —12.013371 | 0.924242 100 61.37 0.4700
acidamy | —10.318862 | 1.003551 99.94 35.21 0.4756
acyl —11.396453 | 0.93119 100 60.70 0.4721
adea —13.671394 | (.880779 100 60.98 0.4701
adh —10.942641 | 1.09688 99.87 53.93 0.4754
adk —15.966104 | 1.086642 99.23 47.31 0.4694

6.5 Hart and Istrail’s Approximation Algorithm
0.5.1 Performance

Recently, the structure prediction problem has been shown to be NP-hard even for the
2-dimensional square lattice and 3-dimensional cubic lattice HP model [BL98, CGP* 98]
(at present, this problem is open for the 2-dimensional hexagonal and 3-dimensional face-
centered cubic lattices). It follows that there cannot be a polynomial-time algorithm to
compute the minimal-energy conformation for an arbitrary protein on the HP model (unless
P=NP), so that W. Hart and S. Istrail devised an approximation algorithm to determine a
conformation provably within a certain bound of the optimal conformation. In the following,
for a given HP sequence s, the energy of the minimal-energy conformation (native state) on
the 2-dimensional (resp. 3-dimensional) lattice will be denoted as the minimal energy opt(s).

DEFINITION 6.7 (PERFORMANCE)
Let A(s) denote the energy of that conformation C' of the HP sequence s returned by the

! We are indebted to W. Gilbert and his lab for generously furnishing data from the database analyzed in
their article [dSLK*98].
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Algorithm 6.5 Quantifying the Hydrophobic Force in Folding

1. Use GA to determine predicted conformation C' as a self-avoiding walk in the FCC
lattice.

2. Compute Dy, = (d; ), where

dij = |lri —7;ll

is the Euclidean distance in conformation C.
3. Compute Dpqp = (€; ), where

=l
" ave

in PDB conformation, where ave is the average distance between successive a-
carbons in the linear chain.
4. Compute RSM D{(Dhp, Dpas):

\/21§i<1<n(did - "‘rlj)z'
(3)

5. Generate M = 200 random coils; compute D,..

OUTPUT: RM SD¢ between conformation C' found by GA and conformation from
PDB data, and percent contribution of the hydrophobic force.
hyd.meas.lis
{RC : RSMDpgc > RSM D¢}
{RC}|

hyd.meas.2is
RMSDgc — RMSD¢

RMSDpc
and s.d. (hyd.meas.2) is the standard deviation for runs this Algorithm.

El
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approximation algorithm A. The performance of A for a specific sequence s is defined by
Als)
opt(s)’

Let Sg be the set of all sequences, whose minimal energy is exactly —E. The absolute
performance of A is

Rals) =

Ra=1inf{R4(s)|s € Sg,E € N},
while the asymptotic performance is

R = sup{inf{Ra(s) | s € Sk}}.
EeN

Absolute performance is the guaranteed performance that can be achieved for all sequences.
Asymptotic performance describes the behavior of A for long sequences. For instance,
suppose that we know that for every sequence s, the minimal energy is opt(s) = —4n, and
suppose that the energy of the conformation returned by the algorithm A is A(s) = —2n + 1.
Then the performance of .4 for the sequence s is

—2n+1

Rals) = —4n

The absolute performance is then given by

) . —2n+1\ 1 " _
Ras = ‘rlzlelfl;l <—:T> =3 (achieved when n = 1),
and the asymptotic performance is given by
—2n+1 1
oo : i
RA = nlggo ( —4n ) 2’

Asymptotic performance seems more appropriate for describing the performance of an
algorithm.

6.5.2 Lower Bound

To compute the performance of an algorithm that approximates the minimal energy of a
sequence s, it is necessary to have a lower bound for opt(s). A first bound can be found using
the following considerations. For every lattice model L, the number of possible neighbor
positions per single monomer is finite and independent of the actual position of the monomer.
In the 2-dimensional square lattice, every monomer has 4 possible neighbor sites, and in the 3-
dimensional cubic lattice, each monomer has 6 neighbor sites. Let ¢y, the lattice connectivity
constant, denote the maximum number of neighbor positions for a monomer in the lattice L.
It follows that for every interior H-monomer, 2 of the ¢, possible neighbor positions of an H-
monomer are occupied by the neighbors in the HP sequence. For terminal H-monomers, only
one of the ¢z, positions is occupied by a neighbor in the HP-sequence. Thus, every interior
(resp. terminal) H-monomer can form at most ¢, — 2 (resp. ¢, — 1) contacts. Since we have
counted every possible contact twice, it follows that

N (s)(er — 2) + #termpy(s)

t >
opt(s) > - ,

(6.38)
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where Ay (s) is the number of H-monomers in s and #termy (s) is the number of terminal
H-monomers in s.

For the square and cubic lattices, an even sharper energy bound can be given. This bound
is a consequence of a specific property of the Z lattices, namely that every contact is formed
from monomers with different parity, e.g.

1 2 2 3 4

PROPOSITION 6.8

Let s be a sequence and w be a conformation of s in the 2-dimensional square or 3-dimensional
cubic lattice. If the ith and jth monomers form a contact in w, then i is even and j is odd, or
vice versa.

This is a simple consequence of the following proposition.

PROPOSITION 6.9
Let& = (21,...,2q4) and § = (y1,-.. ,ya) be two points of ¢, and let w be a self-avoiding
walk with |w| = n such thatw(1) = & and w(n) = y. Then

d d
|w| iseven & (Z T = Zy,) mod 2. (6.39)
i=1 i=1 .

PROOF This is by induction on n. Assume we have proven the claim for all self-avoiding
walks w with jw| < n. Let w be a walk of lengthn + 1. Let = w(1) and § = w(n + 1). By
the induction hypothesis, we know that

|| is even & <Zx, Zz,) mod 2

i=1

where w’ = w(1)...w(n) is the subwalk of w not including w(n + 1) and Z = w(n) =
(21,...,24). Then |w] is even if and only if |w'| is odd. Furthermore, ¥ — Z'is a unit vector.
Hence there exists 1 < i < k such that

(yl»“')y’i—17yi7yi+la'-'ayd) = (zla‘--3zi—13zi:t152i+17--'~,zd)~
This implies that (E, 1T = Zle yi;) mod 2 ifand only if(z:f‘:1 x; # Z;{:I z;) mod 2,
from which the claim immediately follows. ]

Now, label the H-monomers by X and Y, where all monomers labeled X' (resp. }") have the
same parity, and those labeled by X and Y have opposite parity. By the last corollary, every
contact is formed between a monomer labeled by X and one labeled by Y. Let A’y (s) (resp.
Ny (s)) denote the number of H-monomers labeled by X (resp. Y') from s. Since there are
two possible labelings, obtained by interchanging X and Y, select the labeling that guarantees
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that the number of free neighbor positions of monomers labeled by .Y is at most that of the
number of free neighbor positions of monomers labeled Y. In other words, we have either

N () < A3 (9). or

.40
Ny (s) = Ny (8) A #termx (s) < #termy (s). (6.40)

Here, #termx (8) (resp. #termy ($)) is the number of terminal monomers labeled X' (resp.
17). Since every contact connects an X -monomer with a Y -monomer, and since the number of
possible topological neighbors of X -monomers is at most the number of possible neighbors
of Y'-monomers, it follows that the maximal number of contacts equals the number of possible
topological neighbor positions of X -monomers. This yields

opt(s) > (2d — 2Ny (s) + #termy (s). (6.41)

where d is the dimension of the lattice.
The main idea of the Hart-Istrail approximation algorithm for the 2-dimensional square
lattice is as follows. Consider the sequence

I3 7T O1012 151719 222426 29313335 38 42

101000100 0001010100 0:0:00101010100'000°

where we have numbered the H-monomers. Even H-monomers are shown in gray,
odd H-monomers in black. By the above convention, there are fewer even monomers,
which implies that the monomers 10.12,22,24,26, 38, and 42 are labeled by X, while
1.3,7.15.17,19,29.31.33. and 35 are labeled by ¥ (Nx(s) = 7, Ny (s) = 10). We now
search for a point in the sequence with at least half of the .X-monomers on one side, and half
of the Y™ on the other side (in general, we try to maximize the .X's on one side and }’s on the
other side, but we always get at least half/half). This is called the folding point. In our case,
the folding point is between monomer 19 and 22. Then we align the X's in a column on one
side, with the Y's in a column on the other side, such that the aligned Y- and Y -monomers
form contacts. Proposition 6.8 requires that we have at least distance 2 between .\ -monomers
(and similarly for the Y" monomers). One possible alignment is given in Figure 6.13. Using
this alig_nmenl our criteria for the selection of the folding point guarantees that we have at
\ (

least - contacts, which implies that
J\J"‘\’ (S) l
RY > li 2 = - 6.42
A= \\(lsI)I:x 2Ny (8) + #termy () 4 ( )

Now only the connection between the monomers aligned in the two columns is missing. In
principle, we could use an arbitrary self-avoiding walk of the appropriate length connecting
two successive monomers in a column. But we have to guarantee that the combination of
these walks is a self-avoiding walk itself. The simplest manner of achieving this is to use a
U-formed walk for all connections, as in the following diagram:

Tii_._
1
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19 TT 22

Figure 6.13 Possible alignment with folding point between monomers 19 and 22. The X -monomers
are shown in gray, the Y's in black. Note that the distance between two Xs (resp. two Y's) is always 2.

The final conformation is given in the left part of Figure 6.14. The right part is an alternative
conformation that has an additional contact. The Hart-Istrail algorithm would produce only
the left conformation, since it is easier to calculate. Furthermore, it has the same absolute and
asymptotic performance compared with an algorithm that uses a more sophisticated form of
connection for the aligned monomers (as in the right conformation). The conformations of the
left type are called basic U-folds.

The alignment given in Figure 6.13 is not the only possible alignment. An alternative is
given in Figure 6.15 together with a possible conformation. But again, this is not used by the
approximation algorithm, since we get the same absolute and asymptotic performance.

6.5.3  Block Structure, Folding Point, and Balanced Cut

In the following, we assume for a given sequence s a labeling of H-monomers as .X'- and
Y -monomers, as defined by equation (6.40). The labeling of the H-monomers naturally gives
rise to a decomposition of a sequence into blocks containing only H-monomers having the
same label. Such a block always starts and ends with an H-monomer. In the following, we use
subseq(s. 7, j) with i < j to denote the subsequence of s starting with 7 and ending with j.
For instance, consider the sequence

s = 101000100101.
Then subseq(s,1,7) = 1010001 is one block. The other blocks are subseq(s,1.3),

subseq(s. 3, 7) and subseq(s, 10, 12), but not, e.g.. subseq(s, 7, 10).
Formally, we say that a sequence subseq(s, 7, j) is a block if the sequence starts and ends



240 COMPUTATIONAL MOLECULAR BIOLOGY

42
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24
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Figure 6.14 Two possible conformations for the alignment given in Figure 6.13. The left
conformation is the one output by the approximation algorithm.

| @@ 42 1 T 42
3 @@ 38 3 Gees

15 @@ 26

17 @===@ 24

19 @reeng@ 22

Figure 6.15 An alternative alignment together with a possible final conformation.
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with 1, and if the 1s are separated by an odd number of Os, i.e. if

*

subseq(s,i,j) € 1 (U 0211
1>0

Note that every block has odd length. The label of a block is the label of its H-monomers.
A block subseq(s, 7, j) is called maximal in s if it cannot be extended, i.e. there isno ! > j
(resp. | < i) such that subseq(s, ¢, 1) (resp. subseq(s, [, 7)) is a block.

For every sequence, there is a unique decomposition of this sequence into maximal blocks,
which are separated by block separators. This is called the block structure of s. An example
of such a decomposition is

a b c d e
441 4
s = 10100010000101001010100101011010101001000101. (6.43)
——— . S S e e e e

<«

The sequences between consecutive blocks are called block separators. In the above example,
the sequences marked a, ... ,e are block separators. Note that block separators consist of
a even number of 0s. Furthermore, note that a block separator can be the empty sequence
(such as the block separator d). In the following, we fix a sequence s with block structure
s = zobyz; ... b zx, where the b;s are maximal blocks, and the z;s are the block separators.

We now consider the problem of finding a folding problem that ‘balances’ the number of X -
monomers on the one side with the number of ¥ -monomers on the other side. This yields the
following definition of a folding point. In our discussion below, we consider only sequences
that have at least 2 blocks.

DEFINITION 6.10 (CUT)
Let s be a sequence. A cut ¢ for s is a triple (s,, s, s3) such that there exists i < k with

Sa = Zob121 .. .b,’,
St = 24,

83 =biy12i41 ... brzy.

The value of ¢ is defined as

B min{Nx (sa), Ny (s3)},
val(c) = max{ min{NyXf(sa),/\/;(Sfa)} } .

A cut is of XY type, if

val(c) = min{Nx (sa), Ny (s3)},
and of YX type if

val(c) = min{Ny (s4), Nx(s3)}.

A cut ¢ is called maximal if its value is maximal.
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A cut is called balanced if

val{c) > \\2(5)

THEOREM 6.11 (HART AND ISTRAIL)
Every maximal cut is balanced.

A cut ¢ = (84,87, 83) 1s a folding point if it is a maximal cut and
cof XY -type = 84 ends with an X -monomer
and s begins with a Y -monomer,

cof Y X-type = $o ends with a Y -monomer
and s;; begins with an X'-monomer.

PROPOSITION 6.12
Every sequence s has a folding point.

PROOF We consider only sequences whose maximal cut has a value greater than 0. Let s be
a sequence, and let ¢ = (s,. 87, $3) be a maximal cut for s, where

Sa = 306131 Ce [),‘.

SI = Zi,

Sz = bi+lzi+l .. bkzk.

We will consider only the case that ¢ is of XY -type. The other case is analogous. If ¢ is of
XY -type. then we distinguish two cases:

1. b; is labeled by X. Then b, is labeled by Y. By the definition of block structure,
the last monomer of b; is an H-monomer labeled by .X. Furthermore, the first
monomer of ;| is an H-monomer labeled by }". Hence, ¢ is a folding point.
b; is labeled Y. Then by is labeled by Y. Let ¢’ be the cut (s, s}, s';) with

(8]

Sa = zob,z] PN [),‘3,‘1);+1,
S| = Zit1s
S‘d = bj+22i+'_) . [szk..
Then ¢ is a cut satisfying
Nx(s5) > Ny (sq) and Ny (s) = Ny (s9).
Hence, val(¢’) > val(c). which implies that ¢’ is maximal. By the previous case, ¢
is a folding point.
|

Hence, we have only to search through all possible cuts of s to find a folding point, which
can be done in linear time. Given the folding point, we can perform the basic U-fold as given
by Algorithm 6.6 and its subroutines (Algorithm 6.7). The performance of this algorithm was
calculated earlier in equation (6.42).
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Algorithm 6.6 Basic U-Fold

UFold(s) {
calculate block structure
find folding point ¢ = (Sa,$1,$3)
if (¢ is of XY -type) {

to = 8o with all Y -monomers substituted by 0
t3 = s3 with all X-monomers substituted by 0
}
else {
ta = 8o with all X-monomers substituted by 0
t3 = s$3 with all Y-monomers substituted by 0
}
wo = foldpart(reverse(ta),($).(3')
wg = foldpart(ty, (1), (i)
if (’81' == 0)
return (append(reverse (wWa) ,wg) )
else {
w, = Uloop('—sfzd,(f)l), O NEN)!
return (append(reverse (Wa) ,wi,w3) )
}

6.6 Constraint-Based Structure Prediction

Despite the extended use of lattice models, most of the techniques used for protein structure
prediction are heuristic methods. Although they may perform well in finding local or perhaps
even global optima, one does not know when a global optimum has been found. There are
(to the best of our knowledge) only two methods that are able to find global optima and to
prove optimality for the HP-model, namely the ‘constraint hydrophobic core construction’
(CHCC) method by K. Yue and K. Dill [YD93, YD95], and the constraint-based approach
by R. Backofen [Bac98]. The later approach has been applied to another lattice model with
a more complex energy function in [BWBB99]. We outline the basic constraint formulation
that underlies the latter search algorithm. Details of the algorithm in {Bac98] lie outside the
scope of this text.

The algorithm is based on constraint optimization, which is the combination of two
principles, namely generate-and-constraint with branch-and-bound. To apply constraint
optimization, we have to transform the protein structure prediction problem into a constraint
problem. A constraint problem consists of a set of variables together with some constraints on
these variables. In the following, we fix a sequence s of length n.

The constraint problem for protein structure prediction consists of variables, which
range over finite domains. Additionally, one must also use boolean constraints, entailment
constraints, and reified constraints. By reified constraints, we mean constraints of the form

(x=1) < (¢),

where x is a boolean variable and ¢ is a finite domain constraint. The variable x is 1 if the
constraint store (i.e. the collection of constraints generated at this point in the execution of
the program) entails ¢, and O if the constraint store disentails ¢. A constraint store entails
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Algorithm 6.7 Subroutines Uloop and foldpart

subroutine Uloop(len, start, loopdir, onestep) {
if (len == 0)

return(e)
else {
w(l) = start
for (i=14i< B —1; i++)

w(i+1) = w(i) + loopdir
w(#2+1) = w(*) + onestep
for (i=*2+Li<len—1; i++)

w(i+1) = w(i) — loopdir

return(w)
}
}
subroutine foldpart (seq,start,dir) {
w(l) = start
i = 2
while (i < |seq|) {
if (s == 0) {
zerolen = max{j+ 1| i+ j<|[seg A siSit1...8i4; €07}
looplen = zerolen-1
w(t)...w(i+ looplen—1) = Uloop(looplen,w(i—1)+dir,dir,(?))
w(i+ looplen) = w(i+ looplen—1)—dir
it = i+ looplen+1
}
else {
w(@) = wlE-1)+(9).
i = 1+1
}
}
return (w)

}
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a constraint ¢ if every valuation that makes the constraint store valid also makes ¢ valid. It
disentails ¢ if the conjunction of ¢ with the constraint store is not satisfiable. We use also
entailment constraints of the form ¢ — ¥, which are interpreted as follows. If a constraint
store entails ¢, then 1) is added to the constraint store. Finite domain constraints and reified
constraints can be encoded directly in many modern constraint programming languages.

Given an HP sequence s = s1,...,8, € {0,1}" of length n, we can encode the space
of all possible conformations of s as a constraint problem in the following manner. For every
1 < ¢ < n, we introduce new variables X;, Y; and Z;, which denote the z-, y-, and z-
coordinates of ¢(7), the conformation position of the ith monomer s; of the HP sequence s.

Since we are using the 3-dimensional cubic lattice, we know that these coordinates are
all integers. However, we can even restrict the possible values of these variables to the finite
domain [1..2n].2 This is expressed by introducing the constraints

X €12 n)]AY; €[1..(2-n)]AZ; € [1..(2n)] (6.44)
forevery 1 < i < n. The self-avoiding condition is just (X;, Y;, Z;) # (X;,Y,,2;) for&# j.*
Next we want to express that the distance between two successive monomers is 1, i.e.
1(Xis iy 24) = (Rit1, Yitr, Zip1)]] = 1.

Although this is some sort of constraint on the monomer position variables X;, Y;, Z; and
Xi+1, Yi+1, Zi+1, it cannot be expressed directly in most constraint programming languages.
Hence, we must introduce for every monomer ¢ with 1 < ¢ < n three variables Xdiff;,
Ydiff,;, and Zdiff;, having values 0 or 1. Then we can express the unit vector distance
constraint by

Xdiff;
Ydiff;

|Xi = Xig1l, zZdiff; = |2; - Ziqal,
IYi——YH_]I, 1 = Xdiff; + Ydiff; +zdiff,.

The constraints described above span the space of all possible conformations. In other words,
every valuation of X,,Y;,Z; satisfying the constraints introduced above is an admissible
conformation for the sequence s, i.e. a self-avoiding walk of s. Given partial information
about X;, Y;, Z; (expressed by additional constraints as introduced by the search algorithm),
we call a conformation ¢ compatible with these constraints on X;, Y;, Z; if ¢ is admissible and
c satisfies the additional constraints.

In order to use constraint optimization, we must encode the energy function. For HP-type
models, the energy function can be calculated if we know for every pair of monomers (¢, j)
whether ¢ and j form a contact. To this end, for every pair (i, j) of monomers with i + 1 < j,
we introduce a variable Contact; ;. The variable Contact; ; is 1 if ¢ and j have a contact
in every conformation which is compatible with the valuations of X;, Y;, Z;, and 0 otherwise.
We can express this property in constraint programming as follows:

Xdiff;; = lXi—Xj|, Zdiff;; = lZ,‘—Zjl,
Ydiffi,j = ‘Y,’ - le, Contact;; € {0, 1},
(Contact;; = 1) ¢ (XAiff; +Ydiff; + Zdiff; = 1), (6.45)

2 We could have used [1..n]. However, the domain [1..2n] is more flexible, since we can assign an arbitrary
monomer to the vector (n, n,n), and still have the possibility of representing all possible conformations.

3 This cannot be directly encoded in most constraint programming languages, but we reduce these constraints
to difference constraints on integers.
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where Xdiff;;, Xdiff;;, and Zdiff;; are new variables. The constraint (6.45) is an
example of a reified constraint.

Using the variables Contact; ;, we can easily encode the energy function, which is subject
to constraint optimization. For the HP model, we introduce a variable HHContacts that counts
the number of contacts between H-monomers. Formally, HHContacts is defined by

HHContacts = Z Contact; ;. (6.46)
iH+1<jA
s(ty=HAs(j)=H

We now define a variable Energy, and add the constraint
Energy = —HHContacts.

Summarizing, we have encoded self-avoiding walks by means of the variable Energy.

We can now describe the search procedure, which is a combination of generate-and-
constraint and branch-and-bound. In a generate step, select an undetermined variable var from
the set of variables {X;, Y, Z; | 1 < i < n} according to some specified selection strategy. A
variable is determined if its associated domain consists of only one value, and undetermined
otherwise. Next, select a value val from the associated domain, and set the variable to this
value in the first branch (i.e., the constraint var = wal is added to the constraint store), and
the search algorithm is called recursively. In the second branch, which is visited after the first
branch is completed, the constraint var # wval is added to the constraint store.

By constraint propagation, each insertion of a constraint leads to a narrowing of some (or
many ) domains of variables or even to failure, both of which prune the search tree by removing
inconsistent alternatives. Thus, the search is done by alternating constraint propagation and
branching with constraint insertion. The generate-and-constraint steps are iterated until all
variables are determined (which implies that a valid conformation is found). If we have found
a valid conformation ¢, then the constraints will guarantee that Energy is determined. Let E.
be associated value of Energy. Then the additional constraint

Energy < E. (6.47)

is added, and the search is continued (via backtracking) in order to find the next best
conformation, which must have a smaller energy than the previous ones due to the constraint
(6.47). This implies that the algorithm finally finds a conformation with minimal energy.

6.7 Protein Threading
6.7.1 Definition

The protein threading problem is a variant of the protein structure prediction problem, where
we have a sequence s with known structure, and we want to determine the structure of a
sequence s’ that is homologous to s. The fact that s and s’ are homologous could be derived
using alignment distances, or homology could be known, based on biological reasons. The
idea is to use the known structure of s to guide structure prediction for s’ by simultaneously
aligning s” with s and with the known structure of s. In the following, sequences are always
protein sequences, using the one-letter alphabet for amino acids.
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DEFINITION 6.13 (CORE MODEL) oL
Let s be a sequence. A core model for s is a tuple (m, &, X, Lin, lmax ), where

c= (cly"' 70771)7
X=0s-- 1 Am),
l-;nin = (lg]in’ s 71;]7?“ 3
l:nax = (l(r)nax’ oo 71;2(“)7
such that
Isl=Xo+ Y (ci+X)
1<i<m
and

V1<i<m: Mg\ e
Given a core model (m, ¢, X, l-;,,in, l—;,,ax) for s, we define the ith core region of s to be the set
of positions

C,»:{Ao+ Z(cj+xj)+k‘1gkgci}.

1<j<i
The jth position of the ith core is denoted by C; ;.

Usually, the core model represents the collection of conserved parts of the secondary
structure of s. In this case, the core regions C},... ,C,, correspond to secondary structure
elements (a-helices, 3-sheets) of s. Let ¢y,... ,c,, denote the lengths of the core regions
Ci,...,Cp. For1 <i < m, the integer A; denotes the length of the non-conserved loop or
coil region between core region C; and C;;. The value Ag is the length of the N-terminal
loop, while A, is the length of the C-terminal loop.

A threading of sequence s’ through the core model for s is a mapping of the core positions
to consecutive positions of s’. Since we are using consecutive regions, a threading is uniquely
determined by the mapping of the first position of every core region. Furthermore, this implies
that there are no gaps allowed in core regions. All gaps in the alignment must occur in
the loop regions. In insertion and deletion positions in the loop regions, one must obey the
length restrictions imposed by the core model. Here, I™" is the minimal length needed to
connect C; and C;41 according to stereochemical restrictions (depending, e.g., on the distance
between the last position in C; and the first position of C;; in the structural model of s). The
value ["™?* is the maximal length allowed for the loop region 7, and can be used to encode
some biological knowledge of the relative distance between core regions C; and C';;;. If no
knowledge is supplied, then [™? is set to co.

DEFINITION 6.14
Let M¢c = (m, & A, lnin, lmax) be a core model for a sequence s. Let s' be a sequence. A
threading of s’ through the core model M for s is a vector

F=(t1,... ,tm) ENT
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E[H[E[A]G[T W[TIN]DIAT

Figure 6.16 Schematic view of a threading. The structure of a sequence s together with its core model
is shown. The core model consists of 4 core regions C1...C4 with core lengths 4,4, 4, and 3. The
arrows indicate the threading (t1,¢2,t3,t4) of s’ through the core model for s.

such that
L+I§™ <ty < 1415, (6.48)
VI<i<m:(t;+ci+IP" <ty <t + e + 179, (6.49)
and
tim +Cm H 1P 8|+ 1 < by + e + ITRX (6.50)

In the following, we set ¢y = O for convenience. A schematic view of a threading (for a
specific core model) is given in Figure 6.16.

The conditions (6.48)—(6.50) are called ordering constraints. These constraints imply
so-called spacing constraints, which constitute a domain for the ith value of an arbitrary
threading

VI<i<m: |14 (+IM) <t <|s'|+1- Y (¢ + 1) (6.51)

J<i iz

DEFINITION 6.15 (INTERACTION GRAPH) ..
Let s be a sequence with a core model M¢ = (m, "¢\, lnin, Imax ). An interaction graph 7
for M is a graph (V, E), where E C V2 and V is the set of all core regions, i.e.

V={Ci|1<i<m}.
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The interaction graph describes which core regions contain core positions that are
‘neighbors’ in some biochemical sense, i.e. that are core positions that interact in the folded
structure. The corresponding interactions in a threaded structure of s’ will be evaluated by the
scoring function.

DEFINITION 6.16 (SCORING FUNCTION)

Let s be a sequence with core model M¢ = (E,X, fmin, fmax) and interaction graph 1. A
scoring function g for s, M, and T consists of two functions g; € N? and g € N* with the
property that

Given a threading £ of s' to s under the core model M, the score of f(f) of  is defined by

f@) = Zgl i, t)+zzgz i,J,ti, t;).

i=1 j>i

This is the form of scoring function that is most often used in protein threading, where only
pairwise interactions are considered. A possible source for the pairwise scoring function g,
is given by the method of [Sip90, Sip93] described in Section 6.3. Sippl’s technique, building
on that of Myazawa-Jernigan [MJ85], calculates pairwise potentials from the PDB database
of known protein structures. Note that equation (6.52) indicates which core regions interact,
and hence could be used as the defining equation for the interaction graph Z given the scoring
function g,.

In general, higher-order interactions could be admitted. To include these, one must extend
the definition of interaction graph to that of an interaction hypergraph. Furthermore, one must
introduce 2n-ary functions g,, in order to implement n-ary interactions. If the core model has
m regions, then n < m. Hence, the fully general form of scoring function is

f(ﬂ = Zgl Zl’ iy +Z Z g2 11V7’27t11’ 12)+

i1 d2>0
+§ E E g"l Zl$7’27"‘7i77hti17ti2v""tim)'
i1 2> Im—1>0m

To illustrate the principles behind protein threading, we recall the example given in [LS96],
which shows two possible threadings of the ancient homologues sperm whale myogiobin
([Wat69], PDB code IMBN), and the alpha chain of human hemoglobin ((KRA92], PDB
code 1DXT). In Figure 6.17, the sequences of these proteins are illustrated together with the
core regions, as well as the threads of the core regions. The threading technique can produce
an appropriate structure prediction, whereas traditional alignment methods fail due to the low
sequence similarity (see [SS91]). In Figures 6.18 and 6.19, we show the structure of these
proteins, where additionally the core regions and the threads of the core regions are indicated.
One can see that the quality of the threading depends very much on the core model.

6.7.2 A Branch-and-Bound Algorithm

In the next section, we prove that the protein threading problem is NP-complete, and hence,
unless P = NP, there cannot be an optimal protein threading algorithm with polynomial
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Figure 6.17 Sequences of whale sperm myoglobin ([Wat69], PDB code IMBN) and human hemoglobin ([KRA92], PDB code 1DXT, chain «) together
with the core regions and threadings. The first pair shows the core model for IMBN without Helix D, together with the optimal threading for 1DXT. The
second pair shows the core model for IMBN including Helix D. and again the corresponding optimal threading (both threadings are taken from [LS96]). Note
that a threading predicts only the positions for the core regions, which implies it predicts the number of gaps that have to be introduced in the loop regions:
however, it does not predict the exact positions of the gaps. For this reason, we have displayed the gaps always at the end of the loop regions.
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Helix D

Figure 6.18 Native structure for sperm whale myoglobin ([Wat69], PDB code IMBN) displayed using
cartoons. The core regions are indicated in dark gray. The first core model does not contain the short
Helix D, the second contains Helix D.
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Misplaced Thread Helix B

Thread Helix D

Figure 6.19 Two threadings of the a-unit of human hemoglobin ([KRA92]}, PDB code 1DXT) through
the structural model of sperm whale myoglobin. In both cases, we have shown the native structure of
hemoglobin and indicated the region predicted by the threading using the corresponding shadings of
Figure 6.18. The first picture shows the optimal threading through the core model for myoglobin not
containing the short Helix D. The second shows the optimal threading if one includes Helix D in the
core model for myoglobin. In this case, the threading has to predict the non-existing helix, which causes
a misplacement of other core regions.
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runtime. In such cases, often a branch-and-bound approach is used. To do this, we need first a
technique to branch on sets of threadings, and second a lower bound on the score for a set of
threadings. For this purpose, it is more comfortable to work with relative positions and lengths
instead of absolute positions and lengths. In the following, we fix a sequence s together with
core model M¢ = (m, ¢, X, fmin, l_;,,ax) for s.

DEFINITION 6.17 (RELATIVE THREADING)
Let t be a threading of s' through the core model M¢ of s. The relative threading of  is the
vectort" = (t7,... ,t7 ) with

tr=ti— Y (c; +1™).
j<i

We definel”™ = (I7,... ,1I) by

7 __ Jjmax _ jmin
li - li lz s

andn” by

m .

=8 1= S (e + ),
i=1
In the following, we assume scoring functions ¢g; and g working on relative threadings,

obtained by appropriately redefining the original functions g; and g,. Here, I} is the relative
length of the ith loop region according to M, and n" is the ‘effective’ length of the sequence
s', relative to the core model M. This can be seen from the derived versions of the ordering
and spacing constraints. The derived versions of the ordering constraints (6.48), (6.49) and
(6.50) are

1<ty <141, (6.53)
Vi<i<m:(t; <t <t +1]), (6.54)

and
t,<n” <t +1, (6.55)

respectively. Similarly, the spacing constraint (6.51) becomes
1<th<n”,
which justifies our reference to n” as the ‘effective length of s’ under M.

DEFINITION 6.18 (THREAQING SETS)
Let s’ be a sequence, andb,d € N™ be two vectors (mnemonic for ‘begin and end’), satisfying

V1<i<m: (b <dy).

We denote by T'[b,d] the set of all relative threadings of s' through the core model M of s
that satisfy the boundaries given by b and d, i.e.

Tlhd = {" |V1<i<m: (b <t] <dy)}.
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PROPOSITION 6.19
The set of all possible threadings of s' to s under M is given by T[1,n"]. where n* =
(n",....n"). The set T[E (i] is empty if there exists 1 < i < j < with
bi > dj.
The set T[¢.¢] is either empty or contains exactly one element, namely {' = &.
In the following, we assume for simplicity that I["®* = oc. Hence, I] = oo, which implies

that the right inequality of the relative ordering constraints (6.53)—(6.55) does not restrict the
search space. Thus, we get the new relative ordering constraints

1<
VI<i<m:(t; <ti))
and

o <n”,

m

respectively. For the bound step, we need a lower bound Ib(’T[I;, (ﬂ) on the score of the
threadings contained in set T[b, (i] A simple version is Ibgupi (T [b, d)). which is defined by

m

min g (i.x) + min  g¢»(i,j,y, 2
Z b,grgd."( ) E Mmdi.}( JiY:2)

=1 > <<
Clearly, we have

m

min  f(#) min Z ,ql(i,tf')+Zg~_>(i,j,f;'.f§)

I‘"'E'T[h,rﬂ f"ET[b,ﬂ =1 i>i

Ibsimpl (T[g’ (Z]) .

Furthermore, the function Ibg,, can be calculated with a runtime that is polynomial in 1 and
n". Later. we investigate a more sophisticated lower bound. In the following, we assume a
selection function

v

sel : T[b,d] = (i, v).

where (7,¢) € [L.m] x [b;..d;[ and b; < d;. The selection function constitutes a search
strategy. and usually has an enormous effect on the efficiency. The branch-and-bound method
for protein threading is given in Algorithm 6.8.

The function empty () checks whether there exists i < j with b; > d;. Using Ibgup () for
the lower bound Ib() does not yield a good pruning of the search tree, for which reason we
consider a more sophisticated lower bound. The function Iby,, is defined by

g (i, t7)
m + gg(i—l,i,t;'_l,t;.)
T ; 1 .
lbpuly( T[b. (]]) = min + min § Zga(i i t), u;)

U i € Tb, a?] liej]> 1

T — 7
u; =t;
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Algorithm 6.8 Branch-and-Bound for protein threading

opt (fun £, sequence s) {

queue =

thread = 0;

opt = oc;

T[T, n"

while (queue # nil) {
Tmﬂ = pop(queue) ;

if (Ib(T[bd]) < opt) {
if (Vi:bi=d;) |

-

thread = b;
opt = f(thread);

}
else {
(i,v) = sel(b,d);
b]
define " = (b,...,b;,) by b =¢ v+1

}
}

TL
TR

max(v + 1, b;)

if i<
if =
iE P>

min(v,d;) if i<j

define d' = (d},....d%) by dy =¢ v if i=j
(lj if i>j
= T[a(i’v]"
= T, d:
(empty (TL) )

if

if (NOT (empty (TR)))
queue = push(TR, queue) ;

else

if (empty(TR))
queue = push(TL, queue) ;
else
if (Ib(TL) < Ib(TR))
gqueue = push(TL, push (TR, queue) ) ;
else
queue = push (TR, push(TL, queue) ) ;

return(opt, thread) ;
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where, by convention, g (%, j, t;,¢;) = g2(4,¢, ¢, ;) and g2(0,1,t0,¢1) = 0. Note that the
ordering constraints imply u} < ¢; forj < iandu} >t forj > i.

PROPOSITION 6.20
For every T1b, d], we have

1bpoty (T b d]) < min _f(f).
freT(b,d)

Furthermore, if T[b,d] = {#"}, then

Ibpoty (75, d]) = £(").

Now it remains to be shown that the function Ibp,y, can be computed in polynomial time.
Note that the definition of Ibpoy () is very similar to the definition of the real lower bound on
T, d]. The only difference is the use of a different u; in the last term of the definition of
Ibpoiy (). This allows a decoupling of the different g, terms. Note that if we do not use g, terms
at all, then the threading problem is no longer NP-hard.

The efficient calculation of Ibgimpi() uses again a dynamic programming technique. We will
first concentrate on the g; and go (¢ — 1,4, ¢]_,, t) terms, and just count the number of times
a calculation of

. |
8(i, 7, T(b,d}) = min Z 592(1’.7,%“5)
T € Thd i
w =t
is called.
LEMMA 6.21

The function lbm,|y(T[5, d)) can be calculated in polynomial time with polynomially many
calls of 8(i, t;, T[b, d]).

PROOF We define the function

. gl (Zatzr)
H(j,,l,‘,T[b,(i]) = min Z +g2(i - l,iitf_l,tf)
PeTlhd i\ +6(, 7, T(b,d))

r_..
tjfx

Then

by (716,d]) = min  H(m,z,Tb,d).

bm <z<dm
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Furthermore, we have for every j > 1,
H(j,z, T[b,d)

gt (i’t;‘)
= min < min Z +g2(i = 1,4, ¢, t7)
posvsho | reThd g | +6(i, 7, TIB,d))

o1 =ypt=2
910,2) + g2 — 1,4,5,2) + 8(j,z, T[b,d)
gl(ivt;)
= min + min +g2(i — 1,4,t]_,,t])
sy CeTlhd igimi | +6(i,t7, T(b, d))

i
ti_ =y, ti=x

In order to substitute the last term by H(j — 1, y, T[l—;, (ﬂ), we need to get rid of the additional
condition ¢7 = x in the inner minimization. Since the variables z and t7, ... , ], do not occur
in the last term, we know that the restriction ¢7 = z only affects the choice of the threadings

. Now, under the assumption of = (00, ... ,00), we have

{(t;,..., )T eTh At :y/\t;:z}

] ify >z,
T {E ) FeTh AN, =y} ity <

Hence, we get

H(j,z,T(b,d))
_ in 91(,) + g2(j = Ljy,x) + Gz, Th,d) |
bj—1<y<min(z,d;_1) + H(] - lava[bad])

THEOREM 6.22
The function lbp,y can be calculated in polynomial time.

PROOF By Lemma 6.21, we need only to show that the function 4(i, t, 7'[5,&']) can be
calculated in polynomial time. For this purpose, we define a function H* by

1
H*(i,k,t],2) = min Z 592(3, 5, 17, uf).
¥ e Tb,d 2

T _ T r |J-l|>1
up =t,up <2

i<k
Then

86,7, Tb,d]) = H*(i,m, t7,dp,)-
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Now H*(i.0.¢]..x) = 0. For k > 0, we have

H*(i k. t7.2)

H*(i.ti k=1.2) ifke{i-1,4i+1},
x if 2 < bgorz>d,
. o ith<i—1Az>t],
) > ifh>i+1Az <t

ik — Lermin(dg1.2)) + Sgoli ko t? 2
min{ Z (i k= 1.t7 min(di—y, 2)) + 5926, k. ], 2), } otherwise.

(ko tr 2 — 1)

6.7.3 NP-hardness

One can even show a stronger result than NP-hardness for protein threading, namely that the
protein threading problem is MAX-SNP-hard. A problem is in the class MAX-SNP if it is
in NP and there is a constant-size lower bound for the performance of any approximation
algorithm for the problem. A well-known problem that is in MAX-SNP is the max cut
problem.

DEFINITION 6.23 (MAX CUT)

Let G = (V) E) be an undirected graph. A cut for G is a subset V"' C 1". The cardinality of
the cut V"' is the number of edges (v, v') in E such that v € V\V" and ¢' € 1", The max cut
problem is. given (i, to find a cut V"’ whose cardinality is maximal.

THEOREM 6.24 (AKUTSU AND MIYANO)
The protein threading problem is MAX-SNP-hard.

PROOF By reduction of the max cut problem. Let G = (V| E) be an undirected graph. Let
vy ... v, be an arbitrary enumeration of 7. The sequence s itself is arbitrary. One uses n core
regions of length 1 (i.e. every node corresponds to one core region). Thus, we have a core
model (n, &, X, ﬁ'““,ﬁ““") with

g = (1,...,1)w
N —
n times
X o= (0....,0),
l_fnin — (0‘ .. ,O)a
l';‘nax (OO, . ,OO)

The sequence s’ that is threaded through the above core model of s has length 2 and is of the
form

7 times

S '
s'=01...01.
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The scoring function f(#) is defined by
g1 (Zz tl) = 07

1 ifi <y, (v, E and s} e
gQ(ivjat‘ivtj) = { ! ’L<‘7 (vt' th)E an St' ;ést‘J

0 otherwise.
Under this core model, every threading & corresponds to the cut
Ve = {v, | s, = 0}.

The scoring function f(t) is nothing other than the cardinality of the cut V; (see also
Figure 6.20), which implies that the optimal threading corresponds to the maximal cut. ]

max cut

Figure 6.20 Reduction of max cut. Every node is a single core region. The cut indicated by the shown
threading is {vo, v1,v2,vs}.

6.8 Exercises

1. Sketch all S(5) = 8 secondary structures for [1, 5], and all S(6) = 17 structures for
[1, 6], in both cases with no constraint on base pairing or minimum size for hairpin
loops. Sketch all secondary structures for ACGUCG, where base pairs are either
Watson-Crick or GU base pairs.

2. Implement a dynamic programming algorithm to compute S(n), the number of
secondary structures on [1,n]. Using your program, give the values of S(25) and
S5(40). '

WARNING S(40) leads to integer overflow for 32-bit integers.
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3. How many possible secondary structures are there for AAUUAAUUAAUU if you
require base pairs to admit hydrogen bonds (i.e. AU, UA, CG, GC, GU, UG)? How
many possible secondary structures are there for AAUUAAUUAAUU if you drop
this requirement? In other words, how many expressions are there in the symbols
*(","),"*’ where * means not base-paired, and the parentheses are balanced?
ANSWER There are 204 secondary structures for AAUUAAUUAAUU with the base
pairing condition and 2283 secondary structures without the base pairing condition.

4. Prove the fact, due to M. Waterman [Wat78], that there are 2" =2 — 1 possible hairpin

loops on the sequence (1,...,n), provided that base pairs are not required to be
Watson~Crick or GU.
HINT Let L(n) be the number of hairpins on the sequence (1,...,n); i.e. the
number of secondary structures with exactly one loopon (1,... ,n).Clearly L(1) =
1 = L(2). For the inductive step L(n+1), there are two cases. If n+ 1 does not base-
pair, then we have contribution L(n). If n + 1 is base-paired with 1 < j < n —1,
then we must consider secondary structures on subsequences (1,...,j7 — 1) and
(4 + 1,...,n). If there were any base pairing in the subsequence (1,...,j — 1),
then there would be at least two loop structures, which we disallow. Thus we can
only consider the subsequence (j+1,...,n),of sizen—~(j+1)+1=n~j. Thus
we have the following:

n—1
Lin+1) = Ln)+ Z L(n - j)
Jj=1

L(n)+ L(n—1)+---+ L(1).

Hence L(1) = 1, L(2) = 1, L(3) = 2, L(4) = 4, L(5) = 8, and by induction
L(n) = 2"~2. Subtracting off the unique structure having no base pairs, we have
that the number of hairpins is 2" 2 — 1.

5. Familiarize yourself with the Vienna RNA Package. Using this software, determine
the secondary structure of three different tRNAs from M. jannaschii.

6. Implement the Nussinov—Jacobson algorithm.

7. Write a Monte Carlo program for folding of a 27-mer in a 3-dimensional lattice,
using the local moves (end segment rotation, corner, and crankcase) described by
§ali—Shakhnovitch-Karplus [SSK94b.

8. An alternative to using Monte Carlo (with or without simulated annealing) for
determining the minimal-energy conformation of a protein in a lattice model is to
employ a genetic algorithm. This has been done by Unger and Moult. Represent a
self-avoiding walk of length . in the 2-dimensional rectangular lattice as a sequence
of n — 1 relative directions S, L, R (straight, left, right). Given an HP sequence
of length n, develop a genetic algorithm that supports crossover and pointwise
mutation of chromosomes, where a chromosome is a sequence of n — 1 relative
directions.

9. The main result from [SSK94b] is that the speed of folding to the native state
depends on the magnitude of the difference between the lowest and next lowest
energy levels in the compact cube. Define é to be the difference between these
two energy levels. Is energy continuous in the lattice model? (i.e. if there is a
conformation of energy E, then is there a conformation of energy level E + 1?)
Show that there 4 is large if and only if there is a pronounced unique minimum.
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10. Given a Boltzmann distribution (6.26), write a small program to compute the
corresponding energy function; i.e., as in Sippl’s work, invert the Boltzmann
probability distribution to obtain an estimate for the energy.

11. Assume that for each amino acid pair {a, b), there is a (positive or negative) constant
k(a, b), for which the force between residue a and b at distance r is

Fa’b(T') — k(:; b)

Assume that the van der Waals force is infinitely repulsive at distances less than or
equal to the van der Waals radius, and otherwise 0. Thus the van der Waals force
corresponds to sphere packing.

Assume that the free energy is the sum of pair potentials depending on the
previously described forces. Prove or disprove the Sippl hypothesis that pair
potentials can be obtained from the frequency data. In other words, using the
previously described forces, generate sample conformations taking minimal free
energy. Now from the frequency data, generate the pair potentials. Do they agree?
If so, how much frequency data is required for a certain convergence?

12. Using Sippl’s approach, calculate nucleotide pair potentials for nucleosome
sequences from the nucleosome database of [IT93]. From the potentials, compute
the net potential for a new oligonucleotide, and give a score of likelihood that the
sequence is wrapped about a nucleosome. Attempt to discern common nucleosome
sequence patterns by using the potentials.
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Molscript [Kra91}, and then rendered using Raster3d [MB97].



Appendix A

Mathematical Background

A.1 Asymptotic complexity

Standard notation for classifying the asymptotic runtime and space requirements for
algorithms is given by O(f), Q(f) and ©(f), whose definitions are given as follows.

Suppose that f : N - Nand g : N = N. We say that f = O(g), or that f is O(g) (read f
is ‘big-O’ of g), if there exist positive constants ¢, ng such that

(Vn > n0)f(n) < c- g(n).

In words, f = Of{g) means that asymptotically, when neglecting constant multiplicative
factors, f is bounded above by g. On the other hand, we say that f = §(g), or that f is
Q(g), if there exist positive constants ¢, ng such that

(¥n > no)c- g(n) < f(n).

In words, f = €(g) means that asymptotically, when neglecting constant multiplicative
factors, f is greater than g; i.e. g is a lower bound for f. It follows from the definitions
that f = O(g) if and only if g = Q(f). Finally, we define f = ©(g) to mean that f = O(g)
and g = O(f).

A.2 Units of Measurement

Recall the prefixes: milli (10~2), micro (107%), nano (10~?), pico (10~!?), femto (10~'%),
kilo (10%), mega (10°), giga (10%), tera (10'2). Thus, for instance, a femtosecond is 10~1°
seconds, a time unit of importance in protein folding simulations.

One angstrom, denoted A, is 10719 meters. Visible light has wavelengths in the micrometre
(micron) range (10~¢ m), while covalent bond lengths are roughly 1 A. A mole is the quantity
6.0229 x 10?3 molecules, also known as Avogadro’s number. One dalton is the molecular
weight of one hydrogen atom; sometimes the weight of a molecule is given in kilodaltons,
denoted kDa Sometimes rRNA is identified by svedberg units, denoted S. This is a measure
of sedimentation rate in an ultracentrifuge.

One calorie is roughly the amount of energy required to raise the temperature of 1 gram =
1 ml = 1 cm® of water one degree Celsius. Bond energies are often given in kilocalories per
mole (kcal/mol), or less often in kilojoules per mole (kJ/mol), where 4.184 J = 1 cal.

Boyle’s law for an ideal gas can be generalized by

PV =nRT
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where P is the pressure acting on the gas, V" the volume occupied by the gas, n the number
of moles of gas, R the gas constant, and T the absolute temperature in degrees Kelvin (K).
The gas constant R is 8.3146 J K~' mole™'. Boltzmann’s constant k = R/N, where N is
Avogadro’s number; thus £ = 13.805 x 10724 J K~'. Boltzmann’s constant appears in the
Boltzmann probabilities
e E()/kT
Zz

where Z = 3 g e~ F)/KT and S is the (finite) set of possible states.

A.3 Lagrange Multipliers

In this section, we recall some facts from calculus of several variables, and state Lagrange’s
method of undetermined multipliers. Many probiems in computational biology involve
determining the maxima or minima of a function of several variables. For instance,
determining the tertiary structure of an amino acid sequence can be approached by finding that
structure which minimizes an appropriate energy function. Nonlinear optimization problems
are in general computationally intractable. However, in certain instances, Lagrange’s method
yields an answer.

Let us begin with by defining some notions. A stationary point a = aj,... ,a, of the
function f{xy,...,x,) satisfies
a
_f_(a) -0
8xi

for1 < ¢ < n. An extremum a of f is a local maximum resp. minimum of f; i.e. there is
an open neighborhood U of the point a such that f(z) < f(z) resp. f(z) > f(a) for all
x € U. By calculus of several variables, we know that all extrema of a smooth (continuously
differentiable) function are stationary, though there are stationary points that are not extrema.
For instance, at o = 0,yo = 0, the function f(z,y) = x> + y3 — 3y has a non-extremal
saddle point at the origin (0,0), where nevertheless partial derivatives %f(0,0) = 0 and
80,00 =0.
Suppose we want to determine a local maximum or minimum of the function

f((L‘l,. .. ,:l,‘n)
subject to m < n additional constraints ¢;(z1,...,%,) = 0, ..., ¢m(x1,... ,2,) = 0.
Since the variables «,, . .. , =, are not independent, but related by the functions ¢;, one might

attempt to write f as a function of n — i variables and then determine the stationary points of
the resulting function. For linear constraints, this may be feasible, but not in general. Instead
of this, extend the function f by defining F(zy,... ,Zn, A1,.-. , Am) to be

f(l'l»-” ,.L'n)+/\1¢1($1,--. axrl)+"'+/\m¢mf(1'ly-~- wl'n)-

Lagrange’s method consists of determining points a = (ay, ... ,a@n, A1, ... , A ) such thatall
partials of F are zero; i.e. %(a) =0forl <i<n,and %’”—:(a) =¢i(a) =0forl <i<m.
It could be the case that a is a stationary, non-extremal point, but in practical situations one
can then check maximality or minimality. For more information on Lagrange multipliers, we
refer the reader to [CJ74].



Appendix B

Resources

B.1 Web Sites

Since the URL of a web page can change rapidly, we do not include URLSs in this appendix.
For links to web pages listed below, please consult the web page for the book, which can
be found by following links from http://www.wiley.co.uk/statistics. The list
of databases presented below is by far incomplete and presents only some of the important
databases:

1. Protein Data Bank (PDB) [BKW*177, BWFT00]: database of three-dimensional
structures of biological macromolecules (proteins, nucleic acids, ... )

2. The CATH database [OMJ*97]: CATH classifies proteins according to Class
(where the different protein classes are mainly Alpha, mainly Beta, Alpha and
Beta, and proteins having few secondary structures), Architecture (which is the
description of the gross overall arrangement of the secondary structure elements),
Topology (which takes into account the overall shape as well as the connectivity
of the secondary structure elements, using structural comparison algorithms) and
Homology (where proteins are grouped together if they are believed to have a
common ancestor).

3. The SCOP database [MBHC95]: SCOP has a similar hierachical structure,
where proteins are grouped according to fold (major structural similarity),
superfamily (probable common evolutionary origin), and family (clear evolutionary
relationship). SCOP is an acronym for Structural Classifcation of Proteins
hierarchical.

4. SWISS-PROT [BAQOQ]: database of annotated protein sequences.

5. Unbiased samples of proteins sharing little homology can be retrieved by
anonymous FTP from EMBL Heidelberg.

6. For the annotated genome of Saccharomyces cerevisiae (yeast), see the MIPS web
site (Munich Information Center for Protein Sequences [MHPF98, MHK199}).

7. The annotated sequence data for the genomes of M. jannaschii and certain other
bacteria can be found at the web site of TIGR.
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B.2 The PDB Format

The Brookhaven Protein Database (PDB) [BKW* 77, BWF*00] contains the 3-dimensional
coordinates in angstroms of 10310 proteins' and 788 nucleic acids (as of February 2000).
The database consists of flat Ascii text files, 80 characters per line (due to earlier punch card
format).

PDB entries are separated into different sections using keywords in the beginning of the
line. There are reserved words such as COMPND, SEQRES, ATOM, etc. For a more detailed
description, see the PDB format description at the PDB homepage. We give below two short
fragments from 2bna.pdb [DSD82] (PDB code 2BNA). The first fragment is from the title
section, and gives general information about the PDB entry:

HEADER DEOXYRIBONUCLEIC ACID 12-NOV-81 2BNA 2BNA 3
AUTHOR H.R.DREW,R.E.DICKERSON 2BNA 8
JRNL AUTH H.R.DREW, S.SAMSON, R.E.DICKERSON 2BNA 9
JRNL TITL STRUCTURE OF A B-/DNA$ DODECAMER AT 16 KELVIN 2BNA 10
JRNL REF PROC.NAT.ACAD.SCI.USA V. 79 4040 1982 2BNAA 1
JRNL REFN ASTM PNASA6 US ISSN 0027-8424 040 2BNAA 2
REMARK 2 RESOLUTION. 2.7 ANGSTROMS. 2BNA 46
REMARK 3 2BNA 47
REMARK 3 REFINEMENT. METHOD OF JACK AND LEVITT (ACTA CRYST., A34, 2BNA 48
REMARK 3 931 (1978)), NINETEEN CYCLES STARTING FROM THE NATIVE 2BNA 49
REMARK 3 290 DEGREES K MODEL AND USING UNIFORM TEMPERATURE 2BNA 50
REMARK 3 FACTORS. THE R VALUE FOR ALL 1836 REFLECTIONS IN THE 2BNA 51
REMARK 3 RANGE 15.0 - 2.7 ANGSTROMS (INCLUDING UNOBSERVED 2BNA 52
REMARK 3 REFLECTIONS) IS 0.21. FOR THE 1051 REFLECTIONS IN THE 2BNA 53

The second fragment is from the coordinate section, where the coordinates of the different
atoms are displayed. The following fragment displays one nucleotide base (cytosine) from the
DNA Helix:

ATOM 13 N1 CA 1 17.117 28.868 24.167 1.00 -1.36 2BNA 100
ATOM 14 C2 CA 1 17.271 27.706 24.834 1.00 3.69 2BNA 101
ATOM 15 02 C A 1 18.423 27.361 25.122 1.00 -6.94 2BNA 102
ATOM 16 N3 C A 1 16.196 26.968 25.127 1.00 -3.13 2BNA 103
ATOM 17 cC4 C A 1 14.974 27.387 24.768 1.00 7.45 2BNA 104
ATOM 18 N4 C A 1 13.880 26.634 25.070 1.00 -.35 2BNA 105
ATOM 19 C5 c A 1 14.779 28.583 24.085 1.00-10.22 2BNA 106
ATOM 20 Ce Cc A 1 15.901 29.335 23.779 1.00 .77 2BNA 107

The result of loading this information in RasMol [SMW95] is shown in Figure B.1. If one
clicks on the atom indicated in this figure, then one obtains the following information (in
Version 2.6 of RasMol [SMW95]):

Atom: 02 15 Group: C 1 Chain: A

! This figure includes proteins, peptides and viruses.
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Click at this atom.

Figure B.1 Result of PDB example. One has to select the BALLS-AND-STICK option in the DISPLAY
menu.
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Farris transformed distance method 154



fatty acids 4
Feller theorem 34
fibrinopeptides 140
fission 119
Fitch-Margoliash method 1567
foldicity 231
folding 2334
hydrophaobic force 235
folding point 23942
forward method 178
forward variable, definition 178-9

fusion 119

G

gap function 111

gap penalty 94-5, 111
Gaussian distribution 30
Geman—-Geman theorem 51
genell

GENEMARK 47

genetic algorithms 60-1, 2334



genetic code 18, 19
fault tolerant 55-60
optimality 55-60
genome 11
genomic analysis 66-8
genomic rearrangements 118-20
genomic segmentation algorithm 69-72
genomic signature 68
geometric distribution 28-9
Gibbs distribution 47-9, 51
Gibbs free energy 38
Gibbs sampler 47-52, 112
global pairwise sequence alignment 88-111
Gotoh algorithm 82, 100-2
Gotoh theorem 96
gradient descent method 54, 180
GU base pairs 205, 209
guanine 8

guide RNA (gRNA) 13, 20, 120-3, 123-8

H
Haemophilus influenzae 67, 68
Hamming distance 205
Hart—I strail approximation algorithm 234-42
heteropolymer protein model 231
hidden Markov models (HMM) 117, 175-99
applications 1937
exercises 197-8
urn model 176
Homo erectus 135
Homo habilis 135
homologous modeling 201
homologous proteins 834
homology testing 81
hydrocarbon molecule 4

hydrogen bonds 3, 9, 17
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hydrophilic amino acid 229
hydrophilic molecules 3
hydrophobic amino acid 229
hydrophaobic force 4, 17
hydrophobic molecules 4
hydroxyl group 4, 5

hypergeometric distribution 32

|

information (entropy) 62
information flow 2

information theoretic entropy 62-3
interaction graph 248-9
inter-chromosomal events 119
internal energy 66
intra-chromosomal events 119

inversion 119

J
Jaccard'sindex 76

Jensen-Shannon divergence 69-70

K
Kececioglu, Li, Tromp algorithm 118
K ececioglu theorem 116

Kronecker 8-function 144, 158

L
L. tarenolae 121
lattice connectivity constant 236
|attice models of proteins 228-34
Lawrence, Altschul, Boguski, Liu, Neuwald, Wootton algorithm 113
least common ancestor 154
likelihood 177-80
recursive definition 160-2
linking number 214
local alignments 111

local move set 2312



log odds ratios 86

M

majority consensus tree 170-1
Mamitsuka's MA algorithm 191-3
Mamitsuko's updates 192-3

Markov chain 3843, 127, 140, 141, 220

definition 176

irreducible 39

reversible 42

stationary 39, 42
Markov chain Monte Carlo algorithm 43
Markov matrix 141
Markov model 125

definition 177

order 176
Markov process 140
Markov property 140-1, 176
Markov random fields 47-51
mathematical concepts 23-79
mathematical models 23

maximal entropy probability distribution 65
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maximum entropy 66
maximum likelihood estimation 52-3, 117, 15766, 184
maximum-likelihood estimation, pair probabilities 132—-3
maximum-weight trace 114-17
mean square difference 56
meiosis 12, 21
messenger RNA (mRNA) 13, 20, 120
Methanococcus jannaschii 1, 2, 9, 67—70, 266
methionine 21
metric 147

definition 90
Metropolis et al. theorem 46
Metropolis—Hastings algorithm 35, 37, 437
mitochondrial DNA (mtDNA) 136, 140
mitosis 12, 21
molecular biology

exercises 212

overview 1-22
molecular fossils 13
molecular fossils 13
Monte Carlo algorithm 43, 220
Monte Carlo applications 55-60
Moore automation 125, 127
motifs 16
multiloops 207
multinomial coefficients 24
multinomial distribution 28
multiple sequence alignment 111-18, 193
multiregional model 135
multivariate function 186—7
mutations 137, 138
Mycoplasma genitalia 68
N

Needleman-Wunsch algorithm 107

Needleman—Wunsch edit distance 914



neighbor relation 166
neighborhood system 44
net pairwise potential 225
neutral networks 203, 205
neutral substitutions 139
non-covalent bond 3
normal distribution 30-1
normalized specific amino acid distance frequency 225
NP-hardness 258
nuclear magnetic resonance (NMR) studies 226
nucleic acids 6-13
nucleotide entropy 66-8
nucleotide sequences 66, 13944
nucleotides 4-8
forms8

Nussinov—Jacobson matrix 208

O

odds ratio 86

oligonuclectides 6

open reading frame (ORF) 12
operational taxonomic unit (OTU) 137
ordering constraints 248

organic chemistry 3

overlay matrices 100

P
pair group method (PGM) 148

pair probabilities, maximum-likelihood estimation 132-3
PAM matrices 86-8, 139, 140

parallel 3 sheets 16

paralel mutations 137, 138

partition function 43, 48, 65

PDB format 266

peptide bond 14

percent minimization 59

performance, definition 234-6

periodicity rules 122



persistence, definition 39
phosphodiester bond 8
phylogenetic trees 136, 145, 148
pivot moves 232

Poisson distribution 29-30, 34
Poisson process 138

polar requirement 17

polarity index 58

polymer, definition 4
polysaccharides 4

positive transition matrix 42
potential energy function 48
primary structure 17, 202
principle of insufficient reason 63
probability density function 25
probability distributions 27-38

probability function 24



probability theory 23-53
exercises 72-3

prokaryotes 1, 19, 20

protein 2

protein data bank (PDB) 266

protein folding problem 201 see also folding

protein motifs 194-5

protein structure 15-17
prediction 201-62

protein threading 202, 246-59
definition 246-9

proteins 14-19

Protokarya 2

Pulley Principle 162

purines 8

pyramidines 8

Q

quarternary structure 17
quartet puzzling step 16670

quartet trees 1668

R

Ramachandran plot 15

random boolean cellular automation 74
random sequence 118

random variables 25-6, 31

reciprocal translocation 119
record-to-record Travel algorithm (RRT) 55
recursion equation 92, 95, 1047
re-estimation of parameters 180

reference amino acid distance frequency 224
relative threading 253

restriction enzymes 81-2

reverse transcriptases 834

reversible Markov process 158
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ribose 7

ribosomal RNA (rRNA) 13, 21
ribosomes 21

RNA 2, 13

RNA polymerase 19, 195

RNA secondary structure 202-13

root mean square deviation (RMSD) 156

roulette wheel technique 61

S
Saccharomyces cerevisiae 266
saddlepoint 52
sdt bridges 17
SCOP database 266
scoring amodel 177-80
scoring function 249, 259
scoring matrices 846
scoring subsequence 111
secondary structure 17, 202
elements 16
segment algorithm 71
segmentation algorithm 32
selenocysteine 56
sequence alignment 81-134
example 834
exercises 128-32
seguence space 205
Shannon entropy function 64
Shannon's formula 62
shape space 205
shuffle algorithm 61
shuffled-codon codes 56, 58
similarity methods 110-11
simulated annealing 434, 46, 220
heuristics related to 54-5
Sinclair theorem 43

single-molecule DNA sequencing 117



small molecules 46
small nuclear (snRNA) 13
Smith—Waterman local sequence alignment 120
spacing constraints 248
specific amino acid distance frequencies 225
standard deviation 26
standard error 31
statistical model 175
statistical significance 69
StatSignificance algorithm 71
Steiner sequences 117-18
Stirling's approximation 146
Stirling's formula 24-5, 62
stochastic matrix 38
Strimmer, von Haeseler algorithm 168
structure prediction 20162

constraint-based 2436

exercises 259-62
sugar molecule 4
sugar transport proteins 195

sugars 6



sum-of-pairs multiple sequence alignment problem 114
supercoiled DNA 218, 220

supersecondary structures 16

SWISS-PROT 266

synonymous substitutions 139

syntenic distance 119, 120

synteny 119

T
tandem duplication 99-110
TATA box 12, 19, 1956
taxon 137
Taylor expansion 29, 143
tertiary structure 17, 201, 202
thermal luminescence 135
threading sets 253
threshold accepting (TA) agorithm 54-5
thymine 8
topological neighbors 229
total free energy 220
total probability formula 25
trace matrix 93, 98
transcription 19-21
transfer RNA (tRNA) 13, 20-1
transition probability functions 141
transitional mutations 140
transitions 110, 127-8
trandation 19-21
transposition 119
transversion 110
transversional mutations 140
tree 145

likelihood 159-60

topology 166

Trypanosoma brucel 1
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trypanosomes 123-8

U

ultrametric trees 147-52

Unger—Moult hybrid genetic algorithm 233
unit evolutionary time 138

units of measurement 2634

UPGMA 148-9, 152, 154-5, 157

uracil 8

V
variance 26
Viterbi algorithm 180

Viterbi score of amodel 179

w

WAC matrix 139

water molecule 4

Waterman, Smith and Beyer theorem 956
Watson—Crick base pairs 121, 124, 205, 209
Watson—Crick model 8

Watson—Crick rules 8

web sites 266

WPGMA 151, 156

Wraparound Dynamic Programming 107, 108

wraparound step 101, 102





